LightOJ 1282 Leading and Trailing

这一题,运用了一些想要让自己记住的知识点,写下第一篇Blog。
首先,求解n的k次方的高三位,运用了特殊的方法。对于给定的一个数 n, 它可以写成 10^a, 其中 a 为浮点数,则 n^k = (10^a)^k = 10^(a∗k) = (10^x) ∗ (10^y); 其中x, y 分别是所求数的整数部分和小数部分. 对于 t = n^k 这个数,它的位数由 10^x 决定,它的位数上的值则由10^y 决定,因此我们要求 t 的前三位,只需要将 10^y 求出,在乘以 100,就得到了它的前三位。

high_three_digits = (int)pow(10.0, 2.0 + fmod(k * 1.0 * log10(n * 1.0), 1))

其中,fmod函数用来求出小数部分。

然后,求解后三位数字用到了快速幂取模以及欧拉函数降幂。
这里写图片描述

但是,如果以为可以直接提交了,那么,就会和兴奋的我一样,换来一个WA。注意,取模的值需要对位数进行判断,不足需要补零。

#include<bits/stdc++.h>
using namespace std;

long long pow_mod(long long a,long long b,long long m)
{
    if(b==0)
        return 1;
    long long x=pow_mod(a,b/2,m);
    long long ans = x*x%m;
    if(b%2==1)
        ans = ans*a%m;
    return ans;
}

long long eular(long long n)
{
    long long res = n,a=n;
    for(int i=2;i*i<a;i++)
        if(a%i==0){
            res = res/i*(i-1);
            while(a%i==0)
                a/=i;
        }
    if(a>1)
        res = res/a*(a-1);
    return res;
}

int main()
{
    int T;
    scanf("%d",&T);
    for(int tt=1;tt<=T;tt++)
    {
        long long n,k;
        scanf("%lld %lld",&n,&k);
        long long ans1 = (int)pow(10.0,2.0+fmod(k*1.0*log10(n*1.0),1));
        long long phi = eular(1000);
        if(k>=phi)
            k = k%phi+phi;
        long long ans2 = pow_mod(n,k,1000);
        printf("Case %d: %lld ",tt,ans1);
        if(ans2>=100)
            printf("%lld\n",ans2);
        else if(ans2>=10)
            printf("0%lld\n",ans2);
        else
            printf("00%lld\n",ans2);
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值