【第21期】观点:人工智能到底用 GPU?还是用 FPGA?

三、时间复杂度和空间复杂度

原创 2016年08月29日 12:57:07

高级语言编写的程序的运行时间取决于以下因素:
1. 算法采用的策略、方案
2. 编译产生的代码质量【高级语言写的源代码通过编译器编译成二进制代码】
3. 问题的输入规模
4. 机器执行指令的速度
其中2和4分别取决于计算机软件、硬件,抛去这些,可见程序的运行时间依赖于算法的好坏和问题的输入规模。

分析一个算法的运行时间时,重要的是把基本操作的数量和输入模式关联起来。

函数的渐进增长:f(n)与g(n),若存在一个整数N,使n>N时,f(n)恒大于g(n),则称f(n)的增长渐进快于g(n)。
判断算法的效率时,函数中的常数和其他次要项科研忽略,更应该关注最高次项的阶数。

算法时间复杂度的定义:进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度。其中f(n)为问题规模n的某个函数。
这样用大写O()来体现算法时间复杂度的记法,称之为大O记法。
一般情况下,随着输入规模n的增大,T(n)增长最慢的算法为最优算法。

如何分析时间复杂度:
 用常数1取代运行时间中的所有加法常数。
 在修改后的运行次数函数中,只保留最高阶项。
 若最高阶项存在且不是1,则去除与这个项相乘的常数。
 最后得到的结果就是大O阶数。

阶数:
 常数阶O(1)
 线性阶O(n)【非嵌套循环】随着问题n的扩大,对应计算次数呈直线增长。
 平方阶O(n²)【嵌套循环】,循环时间复杂度=循环体的复杂度×该循环的嵌套次数
 对数阶O(log(n))(注:logn指的是以2为底n的对数)
例如:

int i=1,n=100;
While (i<n)
     { 
       i=i*2;
     }

常见时间复杂度还有:nlogn阶,立方阶,指数阶O(2^n)等
耗费时间:

O(1) < O(logn) < O(n) < O(nlogn) < O(n²) < O(n³) < O(2^n)< O(n!) < O(n^n)

最坏情况与平均情况:
 平均运行时间是期望的运行时间。
 最坏运行时间是一种保证,在应用中,这是一种最重要的需求,通常除非特别指定,运行时间都是指最坏运行时间。

算法的空间复杂度:
写代码时可以用空间来换取时间。【判断是否闰年的例子:设计算法与查表】
空间复杂度通过计算算法所需的存储空间实现,计算公式:S(n)=O(f(n)),其中n为问题的规模,f(n)为语句关于n所占存储空间的函数。

通常我们都是用时间复杂度来指运行时间的需求,是用空间复杂度指空间需求。当直接要让我们求复杂度时,通常指的是时间复杂度。

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

简析时间/空间复杂度

一、 概念的引入 对于一个问题有很多种算法,那么如何衡量哪一种方法最有效呢?一般从两个方面来衡量:一个是时间效率,即算法处理数据时所花费的时间,用时间复杂度来衡量;另一个是空间效率,即算法所...

常见排序算法及时间、空间复杂度

1.常见排序算法的时间、空间复杂度 参考文献: [url]http://wenku.baidu.com/link?url=UV8radodoNHJRxpJ062pArRCLgLGK7dtDS1nZgHcxdJSza0Tu5yfa9MyF7gZbYvzT0DhuT0AQyzeLp0OjP_R1FzHGfIO5VhzbjVHk_rYeay[/url] 2.常见排序算法 参考文献: [url]http://www.cnblogs.com/liuling/p/2013-7-24-01.html[/url] 总结: [table] | 算法名称 |算法思想 |时间复杂度(最好

数据结构——时间复杂度VS空间复杂度

我们在这篇博客中主要来介绍一下时间复杂度和空间复杂度的区别和联系。我们也将通过一个万年历的例子来分析二者如何平衡,如何取舍。 虽然随着科学技术的发展,计算机硬件的性能已经发生了天翻地覆的变化。我们...

一道看上去很吓人的算法面试题:如何对n个数进行排序,要求时间复杂度O(n),空间复杂度O(1)

看上去似乎任何已知的算法都无法做到,如果谁做到了,那么所有的排序方法:QuickSort,ShellSort,HeapSort,BubbleSort等等等等,都可以扔掉了,还要这些算法干吗阿,呵呵。不过实际上,在数字范围有限制的情况下,是有一个这样的算法的,只需要用一个数组记录每个数字出现次数就可以了。 假定你的数字范围在0到65535范围之内,定义一个数组count[65536](这个空间是常量,和n无关,所以是O(1) ),初值全部为0。 那么假设有下面这些数字: 10

时间空间复杂度

2.9 算法时间复杂度 2.9.1 算法时间复杂度定义 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复...

线段树(二)——时间、空间复杂度

参考文章: 《在一维数组中以完全二叉树方式存储线段树的空间分析》 http://comzyh.tk/blog/archives/479/ 《线段树简介与简单应用》http://hi.baidu.com/etwge/blog/item/c6c2dff887d2eb909f514664.html   我们大家存储线段树的方式无非两种: 二叉链表 一维数组完全二叉树 二叉链表优点是节省空间,缺点是编程复杂度大,执行效率较低,空间复杂度为2N <

数据结构—算法的时间复杂度及空间复杂度

一、绪论 1、  什么是数据结构? 程序设计=数据结构+算法,再简单的来说数据结构就是关系,是数据元素相互之间存在的一种或多种特定关系的集合 2、  数据结构的分类 逻辑结构:数据对象中数据元...

常用的排序算法的时间复杂度和空间复杂度

常用的排序算法的时间复杂度和空间复杂度 分类: 笔试面试题 2010-11-09 07:52 470人阅读 评论(2) 收藏 举报 常用的排序算法的时间复杂度和空间复杂度排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 O(n2) O(n*log2n) 不稳定 O(log2n)~O(n) 选择排序 O(n2) O(n2) 稳定 O(1) 二叉树排序 O(n2) O(n*log2n) 不一顶 O(n)
  • endual
  • endual
  • 2012-01-24 23:03
  • 1166

算法-时间复杂度和空间复杂度

2.9 算法时间复杂度 2.9.1 算法时间复杂度定义 在进行算法分析时 , 语句总的执行次数 T ( n )是关子问题规模n的函数,进而分析 T ( n )随 n 的变化情况并确定T(n)的数量级...

排序算法空间、时间复杂度

排序算法空间、时间复杂度 <span style="font-size: 16px; color:
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)