【剑指Offer学习】【面试题43 : n 个锻子的点数】

原创 2015年07月07日 08:48:28

题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s 的所有可能的值出现的概率。


解题思路

解法一:基于通归求解,时间效率不够高。

  先把n个骰子分为两堆:第一堆只有一个,另一个有n- 1 个。单独的那一个有可能出现从1 到6 的点数。我们需要计算从1 到6 的每一种点数和剩下的n-1 个骰子来计算点数和。接下来把剩下的n-1个骰子还是分成两堆,第一堆只有一个, 第二堆有n-2 个。我们把上一轮那个单独骰子的点数和这一轮单独骰子的点数相加, 再和剩下的n-2 个骰子来计算点数和。分析到这里,我们不难发现这是一种递归的思路,递归结束的条件就是最后只剩下一个骰子。
  我们可以定义一个长度为“6n-n+1 的数组, 和为s 的点数出现的次数保存到数组第s-n 个元素里。

解法二:基于循环求解,时间性能好

  我们可以考虑用两个数组来存储骰子点数的每一个总数出现的次数。在一次循环中, 第一个数组中的第n 个数字表示骰子和为n 出现的次数。在下一循环中,我们加上一个新的骰子,此时和为n 的骰子出现的次数应该等于上一次循环中骰子点数和为n-1 、n-2 、n-3 、n-4, n-5 与n-6 的次数的总和,所以我们把另一个数组的第n个数字设为前一个数组对应的第n-1 、n-2 、n-3 、n-4、n-5与n-6之和。

代码实现

public class Test43 {
    /**
     * 基于通归求解
     *
     * @param number 色子个数
     * @param max    色子的最大值
     */
    public static void printProbability(int number, int max) {
        if (number < 1 || max < 1) {
            return;
        }

        int maxSum = number * max;
        int[] probabilities = new int[maxSum - number + 1];
        probability(number, probabilities, max);

        double total = 1;
        for (int i = 0; i < number; i++) {
            total *= max;
        }

        for (int i = number; i <= maxSum; i++) {
            double ratio = probabilities[i - number] / total;
            System.out.printf("%-8.4f", ratio);
        }

        System.out.println();

    }

    /**
     * @param number        色子个数
     * @param probabilities 不同色子数出现次数的计数数组
     * @param max           色子的最大值
     */
    private static void probability(int number, int[] probabilities, int max) {
        for (int i = 1; i <= max; i++) {
            probability(number, number, i, probabilities, max);
        }
    }

    /**
     * @param original      总的色子数
     * @param current       剩余要处理的色子数
     * @param sum           已经前面的色子数和
     * @param probabilities 不同色子数出现次数的计数数组
     * @param max           色子的最大值
     */
    private static void probability(int original, int current, int sum, int[] probabilities, int max) {
        if (current == 1) {
            probabilities[sum - original]++;
        } else {
            for (int i = 1; i <= max; i++) {
                probability(original, current - 1, i + sum, probabilities, max);
            }
        }
    }

    /**
     * 基于循环求解
     * @param number 色子个数
     * @param max    色子的最大值
     */
    public static void printProbability2(int number, int max) {
        if (number < 1 || max < 1) {
            return;
        }

        int[][] probabilities = new int[2][max * number + 1];
        // 数据初始化
        for (int i = 0; i < max * number + 1; i++) {
            probabilities[0][i] = 0;
            probabilities[1][i] = 0;
        }

        // 标记当前要使用的是第0个数组还是第1个数组
        int flag = 0;

        // 抛出一个骰子时出现的各种情况
        for (int i = 1; i <= max; i++) {
            probabilities[flag][i] = 1;
        }

        // 抛出其它骰子
        for (int k = 2; k <= number; k++) {
            // 如果抛出了k个骰子,那么和为[0, k-1]的出现次数为0
            for (int i = 0; i < k; i++) {
                probabilities[1 - flag][i] = 0;
            }

            // 抛出k个骰子,所有和的可能
            for (int i = k; i <= max * k; i++) {
                probabilities[1 - flag][i] = 0;

                // 每个骰子的出现的所有可能的点数
                for (int j = 1; j <= i && j <= max; j++) {
                    // 统计出和为i的点数出现的次数
                    probabilities[1 - flag][i] += probabilities[flag][i - j];
                }
            }

            flag = 1 - flag;
        }


        double total = 1;
        for (int i = 0; i < number; i++) {
            total *= max;
        }

        int maxSum = number * max;
        for (int i = number; i <= maxSum; i++) {
            double ratio = probabilities[flag][i] / total;
            System.out.printf("%-8.4f", ratio);
        }

        System.out.println();
    }

    public static void main(String[] args) {
        test01();
        test02();
    }

    private static void test01() {
        printProbability(2, 4);
    }

    private static void test02() {
        printProbability2(2, 4);
    }
}

运行结果

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

【剑指Offer学习】【面试题51:数组中重复的数字】

题目:在一个长度为n的数组里的所有数字都在0到n-1的范围内。数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次。请找出数组中任意一个重复的数字。举例说明  例如,如果输入长...

【剑指Offer学习】【面试题34:丑数】

题目:我们把只包含因子2、3 和5 的数称作丑数(Ugly Number)。求从小到大的顺序的第1500个丑数。 解题思路: 第一种:逐个判断每个数字是不是丑数的解法,直观但不够高效。 第二种:创建...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

【剑指Offer学习】【面试题9 : 斐波那契数列】

写一个函数,输入n,求斐波那契(Fibonacci) 数列的第n项

【剑指Offer学习】【面试题31:连续子数组的最大和】

题目:输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。例子说明: 解题思路: 解法一:举例分析数组的规律 解法二...

【剑指Offer学习】【所有面试题汇总】

剑指Offer学习  剑指Offer这本书已经学习完了,从中也学习到了不少的东西,现在做一个总的目录,供自已和大家一起参考,学如逆水行舟,不进则退。只有不断地学习才能跟上时候,跟得上技术的潮流!目录第...

【剑指Offer学习】【面试题4 : 替换空格】

请实现一个函数,把字符串中的每个空格替换成"%20",例如“We are happy.”,则输出“We%20are%20happy.”。

【剑指Offer学习】【面试题26:复杂链表的复制】

题目:请实现函数ComplexListNode Clone(ComplexListNode head),复制一个复杂链表。在复杂链表中,每个结点除了有一个next 域指向下一个结点外,还有一个sib...

【剑指Offer学习】【面试题47:不用加减乘除做加法】

题目:写一个函数,求两个整数之和,要求在函数体内不得使用+、-、×、÷四则运算符号。解题思路  5 的二进制是101, 17 的二进制是10001 。还是试着把计算分成三步:第一步各位相加但不计进位,...

【剑指Offer学习】【面试题49:把字符串转换成整数】

题目:实现一个函数stringToInt,实现把字符串转换成整数这个功能,不能使用atoi或者其他类似的库函数。题目解析  这看起来是很简单的题目,实现基本功能 ,大部分人都能用10行之内的代码解决。...

【剑指Offer学习】【面试题62:序列化二叉树】

题目:请实现两个函数,分别用来序列化和反序列化二叉树。解题思路  通过分析解决前面的面试题6.我们知道可以从前序遍历和中序遍历构造出一棵二叉树。受此启发,我们可以先把一棵二叉树序列化成一个前序遍历序列...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)