关闭

【剑指Offer学习】【面试题45:圆圈中最后剩下的数字(约瑟夫环问题)】

标签: 数字offerjava面试算法
2564人阅读 评论(4) 收藏 举报
分类:

题目:0, 1, … , n-1 这n个数字排成一个圈圈,从数字0开始每次从圆圏里删除第m个数字。求出这个圈圈里剩下的最后一个数字。


解题思路

第一种:经典的解法, 用环形链表模拟圆圈。
  创建一个总共有n 个结点的环形链表,然后每次在这个链表中删除第m 个结点。

代码实现

public static int lastRemaining(int n, int m) {
    if (n < 1 || m < 1) {
        return -1;
    }

    List<Integer> list = new LinkedList<>();
    for (int i = 0; i < n; i++) {
        list.add(i);
    }

    // 要删除元素的位置
    int idx = 0;
    // 开始计数的位置
    int start = 0;

    while (list.size() > 1) {

        // 只要移动m-1次就可以移动到下一个要删除的元素上
        for (int i = 1; i < m; i++) {
            idx = (idx + 1) % list.size(); // 【A】
        }

        list.remove(idx);

        // 确保idx指向每一轮的第一个位置
        // 下面的可以不用,【A】已经可以保证其正确性了,可以分析n=6,m=6的第一次删除情况
    //  if (idx == list.size()) {
    //      idx = 0;
    //  }
    }

    return list.get(0);
}

第二种:分析法
  首先我们定义一个关于n 和m 的方程町矶时,表示每次在n 个数字0,1, … , n-1中每次删除第m 个数字最后剩下的数字。
  在这n个数字中, 第一个被删除的数字是(m-1)%n. 为了简单起见,我们把(m- 1)%n 记为k,那么删除k之后剩下的n-1个数字为0, 1, … , k-1,k+1, … , n-1,并且下一次删除从数字k+1开始计数。相当于在剩下的序列中, k+1排在最前面,从而形成k+1, .. . , n- 1, 0, I, … , k-1 。该序列最后剩下的数字也应该是关于n 和m 的函数。由于这个序列的规律和前面最初的序列不一样(最初的序列是从0 开始的连续序列),因此该函数不同于前面的函数,记为f’(n-1,m)。最初序列最后剩下的数字f(n, m)一定是删除一个数字之后的序列最后剩下的数字,即f(n, m)=f’(n-1, m)。
  接下来我们把剩下的这n-1个数字的序列k-1, …, n-1, 0, 1, … , k-1做一个映射,映射的结果是形成一个从0 到n-2的序列:
  
这里写图片描述

代码实现

public static int lastRemaining2(int n, int m) {
    if (n < 1 || m < 1) {
        return -1;
    }

    int last = 0;
    for (int i = 2; i <=n ; i++) {
        last = (last + m)%i;
    }

    return last;
}

完整代码

import java.util.LinkedList;
import java.util.List;

public class Test45 {
    public static int lastRemaining(int n, int m) {
        if (n < 1 || m < 1) {
            return -1;
        }

        List<Integer> list = new LinkedList<>();
        for (int i = 0; i < n; i++) {
            list.add(i);
        }

        // 要删除元素的位置
        int idx = 0;
        // 开始计数的位置
        int start = 0;

        while (list.size() > 1) {

            // 只要移动m-1次就可以移动到下一个要删除的元素上
            for (int i = 1; i < m; i++) {
                idx = (idx + 1) % list.size(); // 【A】
            }

            list.remove(idx);

            // 确保idx指向每一轮的第一个位置
            // 下面的可以不用,【A】已经可以保证其正确性了,可以分析n=6,m=6的第一次删除情况
        //  if (idx == list.size()) {
        //      idx = 0;
        //  }
        }

        return list.get(0);
    }

    public static int lastRemaining2(int n, int m) {
        if (n < 1 || m < 1) {
            return -1;
        }

        int last = 0;
        for (int i = 2; i <=n ; i++) {
            last = (last + m)%i;
        }

        return last;
    }

    public static void main(String[] args) {
        test01();
        System.out.println();
        test02();
    }

    private static void test01() {
        System.out.println(lastRemaining(5, 3)); // 最后余下3
        System.out.println(lastRemaining(5, 2)); // 最后余下2
        System.out.println(lastRemaining(6, 7)); // 最后余下4
        System.out.println(lastRemaining(6, 6)); // 最后余下3
        System.out.println(lastRemaining(0, 0)); // 最后余下-1
    }

    private static void test02() {
        System.out.println(lastRemaining2(5, 3)); // 最后余下3
        System.out.println(lastRemaining2(5, 2)); // 最后余下2
        System.out.println(lastRemaining2(6, 7)); // 最后余下4
        System.out.println(lastRemaining2(6, 6)); // 最后余下3
        System.out.println(lastRemaining2(0, 0)); // 最后余下-1
    }
}

运行结果

这里写图片描述

1
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

剑指Offer面试题45(Java版):圆圈中最后剩下的数字

题目:0,1,,,,,n-1这n 个数字排成一个圆圈,从数字0开始每次从这个圆圈中删除第m个数字。求出这个圆圈里剩下的最后一个数字。 例如,0,1,2,3,4这5个数字组成的一个圆圈,从数字0开始每...
  • jsqfengbao
  • jsqfengbao
  • 2015-08-11 20:08
  • 2008

剑指offer:圆圈中最后剩下的数字(java)

题目:0,1,,,,,n-1这n 个数字排成一个圆圈,从数字0开始每次从这个圆圈中删除第m个数字。求出这个圆圈里剩下的最后一个数字.     例如,0,1,2,3,4这5个数字组成的一个圆圈,从数字...
  • abc7845129630
  • abc7845129630
  • 2016-10-15 15:02
  • 650

约瑟夫环问题python解法

约瑟夫环问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到k的那个人被杀掉;他的下一个人又从1开始报数,数到k的那个人又被杀掉;依此规律重复下去,直到...
  • littlethunder
  • littlethunder
  • 2014-09-10 16:28
  • 7057

10行Python代码解决约瑟夫环(模拟)

写这篇文章是因为看到别人博客里用了很长一个篇幅(超过50行)去解决一个约瑟夫环问题,而且还是用以简洁著称的python,另外,如果你用X度搜索python 约瑟夫,看到得前几条都是错的,真是好悲剧。 ...
  • u011044759
  • u011044759
  • 2014-09-11 17:21
  • 30474

约瑟夫环 python 实现

面试的过程中遇到了这个问题。就是经典的约瑟夫环。
  • u012250655
  • u012250655
  • 2014-07-28 00:43
  • 1641

约瑟夫环 Python&Swift实现

Josephus问题的通解公式是 f(n,k)=((f(n-1,k)+k-1) mod n)+1,f(1,k)=1 其中f(n,k)表示n个人玩约瑟夫杀人游戏,每次报号k倍数的人被干掉的规则下最终...
  • u012505432
  • u012505432
  • 2016-06-23 22:25
  • 539

约瑟夫环

问题描述:
  • Bone_ACE
  • Bone_ACE
  • 2014-11-17 18:07
  • 3767

约瑟夫环问题

约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;...
  • u011331383
  • u011331383
  • 2015-06-15 15:10
  • 1452

约瑟夫环可用取余实现循环!

看到很多人都习惯用循环列表来做约瑟夫环问题,作为一个新人理解起来确实困难,现提供一种易于理解的方法,仅供参考。
  • wy_97
  • wy_97
  • 2015-11-22 15:55
  • 846

用Python中的list分片方法解决约瑟夫环问题

def func(n):     person = []     for num in range(1, n + 1):         person.append(num)     tag ...
  • Tsinghust
  • Tsinghust
  • 2015-07-09 21:26
  • 815
    个人资料
    • 访问:1009688次
    • 积分:16037
    • 等级:
    • 排名:第762名
    • 原创:527篇
    • 转载:16篇
    • 译文:13篇
    • 评论:204条
    博客专栏
    最新评论