HDU-1881 毕业bg (01背包变形)

本文介绍了一种解决毕业季BG(告别聚会)时间规划问题的算法,通过给定的BG列表及其特性(快乐度、持续时间和发起人的离校时间),采用动态规划的方法找到能够参与的BG组合以获得最大快乐度。

毕业bg

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5303 Accepted Submission(s): 1971

Problem Description
每年毕业的季节都会有大量毕业生发起狂欢,好朋友们相约吃散伙饭,网络上称为“bg”。参加不同团体的bg会有不同的感觉,我们可以用一个非负整数为每个bg定义一个“快乐度”。现给定一个bg列表,上面列出每个bg的快乐度、持续长度、bg发起人的离校时间,请你安排一系列bg的时间使得自己可以获得最大的快乐度。

例如有4场bg:
第1场快乐度为5,持续1小时,发起人必须在1小时后离开;
第2场快乐度为10,持续2小时,发起人必须在3小时后离开;
第3场快乐度为6,持续1小时,发起人必须在2小时后离开;
第4场快乐度为3,持续1小时,发起人必须在1小时后离开。
则获得最大快乐度的安排应该是:先开始第3场,获得快乐度6,在第1小时结束,发起人也来得及离开;再开始第2场,获得快乐度10,在第3小时结束,发起人正好来得及离开。此时已经无法再安排其他的bg,因为发起人都已经离开了学校。因此获得的最大快乐度为16。

注意bg必须在发起人离开前结束,你不可以中途离开一场bg,也不可以中途加入一场bg。
又因为你的人缘太好,可能有多达30个团体bg你,所以你需要写个程序来解决这个时间安排的问题。

Input
测试输入包含若干测试用例。每个测试用例的第1行包含一个整数N (<=30),随后有N行,每行给出一场bg的信息:
h l t
其中 h 是快乐度,l是持续时间(小时),t是发起人离校时间。数据保证l不大于t,因为若发起人必须在t小时后离开,bg必须在主人离开前结束。

当N为负数时输入结束。

Output
每个测试用例的输出占一行,输出最大快乐度。

Sample Input
3
6 3 3
3 2 2
4 1 3
4
5 1 1
10 2 3
6 1 2
3 1 1
-1

Sample Output
7
16

01背包问题
思路:
首先将各个活动排序,按照发起人离校时间进行升序排序
为什么要进行排序呢?因为背包问题的解法有一个特点,它是逆向解决问题的,也就是说,状态转移方程执行完之后,实际上是物品按照逆序放进去,先放最后一个。因为这道题目每个聚会都有一个属性,就是发起人离校时间,如果不排序,最后一个活动的发起人离校时间不是最大的,那么就得不到最优解。

#include <iostream>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include<algorithm>  


using namespace std;

int n;
int dp[1000][1000];
struct Node
{
    int h;
    int l;
    int t;
}Arry[35];
int cmp(Node x,Node y)
{
    return x.t<y.t;
}

int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        if(n<0)
            break;
        for(int i=1;i<=n;i++)
            scanf("%d%d%d",&Arry[i].h,&Arry[i].l,&Arry[i].t);
        sort(Arry+1,Arry+n+1,cmp);
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=Arry[n].t;j++)
            {
                if(j<=Arry[i].t&&j-Arry[i].l>=0)
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-Arry[i].l]+Arry[i].h);
                else
                    dp[i][j]=dp[i-1][j];
            }
        }
        int ans=0;
        for(int i=1;i<=Arry[n].t;i++)
        {
            if(ans<dp[n][i])
                ans=dp[n][i];
        }
        printf("%d\n",ans);


    }
    return 0;

}
### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值