linux+caffe+cuda6.5+GPU

原创 2015年07月09日 15:33:25
本文是接的我的上一篇博客的后续:

blog.csdn.net/dachao_xu/article/details/46544043    linux+caffe+cpu配置


之前是因为没有买显卡,所以无奈配置了linux+caffe+cpu。虽然能跑,但是显卡驱动和cuda都没有装,基本上没装什么东西。本文章也主要写这两部分的安装。


1.显卡驱动的安装

将nouveau添加到黑名单,防止它启动

$ cd /etc/modprobe.d

$ sudo gedit nvidia-graphics-drivers.conf

写入:blacklist nouveau

检查:$ cat nvidia-graphics-drivers.conf


 对于:/etc/default/grub,添加到末尾。
$ sudo gedit /etc/default/grub
末尾写入:rdblacklist=nouveau nouveau.modeset=0

检查:$ cat /etc/default/grub


2.进入Ubuntu, 按 ctrl+alt+F1 进入tty1, 登录tty1后

输入如下命令(注意以下操作均在这个黑色界面里操作,在输入password的时候请用字母上方的数字键盘!!)

$ sudo service lightdm stop

安装NVIDIA ,http://www.geforce.cn/drivers 找到对应NVIDIA的版本(我的是linux340.76.run),进入到NVIDIA的目录下:

$ cd /home/xc                注:(你的用户名)

$ sudo sh NVIDIA-Linux-x86_64-340.76.run     注:(你要cd它所在的文件夹)

一直确定安装完。

重新启用桌面的命令为:$ sudo service lightdm start

3.验证驱动安装是否成功

$ cat /proc/driver/nvidia/version     注:cat后面有空格!

4.CUDA6.5安装(https://developer.nvidia.com/cuda-downloads

$ sudo chmod +x ./ cuda_6.5.14_linux_64.run

将CUDA6.5解压成三个文件($sudo sh cuda*.run --noexec --target .)(.前面有空格)

别为:CUDA安装包: cuda-linux64-rel-6.5.14-18749181.run

    NVIDIA驱动: NVIDIA-Linux-x86_64-340.29.run   (这里就不安装NVIDIA驱动)

    SAMPLE包: cuda-samples-linux-6.5.14-18745345.run

5.开始安装CUDA

$ sudo ./cuda-linux64-rel-6.5.14-18749181.run

安装完成后需要在/etc/profile中

添加环境变量, $ PATH=/usr/local/cuda-6.5/bin:$PATH$ export PATH

保存后, 执行下列命令, 使环境变量立即生效$ source /etc/profile

添加lib路径,在/etc/ld.so.conf.d/新建文件cuda.conf,并编辑

cd /etc/ld.so.conf.d

$ sudo touch cuda.conf

$ sudo gedit cuda.conf

/usr/local/cuda-6.5/lib64   注:即在空白文档里加这一行,保存。

执行下列命令使之立刻生效  

$ sudo ldconfig

6.安装CUDA SAMPLE

安装下列依赖包

$ sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

然后用下述命令安装sample文件

$ sudo ./cuda-samples-linux-6.5.14-18745345.run

完成后编译Sample文件,这边编译的时间有点久,请耐心等待!

编译完成后

$ cd /usr/local/cuda-6.5/samples

$ sudo make

编译完成后, 进入 samples/bin/x86_64/linux/release

$ sudo ./deviceQuery

如果出现下列显卡信息,则驱动及cuda安装成功:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 750 Ti"
 CUDA Driver Version / Runtime Version          6.5 / 6.5
 CUDA Capability Major/Minor version number:    5.0
 Total amount of global memory:                 2048 MBytes (2147155968 bytes)
 ( 5) Multiprocessors, (128) CUDA Cores/MP:     640 CUDA Cores
 GPU Clock rate:                                1084 MHz (1.08 GHz)
 Memory Clock rate:                             2700 Mhz
 Memory Bus Width:                              128-bit
 L2 Cache Size:                                 2097152 bytes
 Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(6553665536), 3D=(4096, 4096, 4096)
 Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers  2D=(1638416384), 2048 layers
 Total amount of constant memory:               65536 bytes
 Total amount of shared memory per block:       49152 bytes
 Total number of registers available per block: 65536
 Warp size:                                     32
 Maximum number of threads per multiprocessor:  2048
 Maximum number of threads per block:           1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size    (x,y,z): (21474836476553565535)
 Maximum memory pitch:                          2147483647 bytes
 Texture alignment:                             512 bytes
 Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
 Run time limit on kernels:                     Yes
 Integrated GPU sharing Host Memory:            No
 Support host page-locked memory mapping:       Yes
 Alignment requirement for Surfaces:            Yes
 Device has ECC support:                        Disabled
 Device supports Unified Addressing (UVA):      Yes
 Device PCI Bus ID / PCI location ID:           1 / 0
 Compute Mode:
    < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = GeForceGTX 750 Ti
Result = PASS


7.caffe的重新编译

由于之前在只有cpu的时候已经编译过来caffe,我以为会ok,make all没什么问题,但在make test的时候出错了。解决办法很简单,就是先make clean下,再去

$ cd caffe-master

$ sudo make all

$ sudo make test

$ sudo make runtest

再用相同的方法去测试minst,运行成功那么整个linux+caffe+cuda6.5+GPU+opencv+matlab+python就已经配置好了。

撒花~~~~~~~~~~~




感谢langb2014对我的帮助,感谢!



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

[转][linux(ubuntu14.04)+GPU+cuda6.5+caffe+openCV2.4.9+matlab2013b+python2.7的新手配置转]

转载自http://blog.csdn.net/langb2014/article/details/44516701 本人是一名新手,无论是学习linux还是学习caffe都是个无名小卒。因为安装了...

linux(ubuntu14.04)+GPU+cuda6.5+caffe+openCV2.4.9+matlab2014a+python的新手配置(修改版)

linux(ubuntu14.04)+GPU+cuda6.5+caffe+openCV2.4.9+matlab2014a+python的配置

linux(ubuntu14.04)+GPU+cuda6.5+caffe

linux(ubuntu14.04)+GPU+cuda6.5+caffe

Caffe安装:Ubuntu16.04 + GPU + CUDA-8.0 + cuDNN v5.1 + OpenCV 3.0.0 + Anaconda2

目录需要下载的东西 cuda 8.0 的 .run文件 cudnn v5.1压缩包 opencv3.0.0-alpha.zip caffe Anaconda2 的.sh文件 安装步骤 安装NVIDIA...

Ubuntu16.04下安装Cuda8.0+Caffe+TensorFlow-gpu+Pycharm过程(Simple)

写在前面在配置了多次之后,为了加深印象,进行此次总结。事实表明硬件环境越好配置起来越顺利。第一次配置是在独显是GT610M的笔记本上进行配置,问题非常多。- 0、对系统进行更新sudo apt-get...

Ubuntu16.04安装Caffe步骤CPU(无GPU无Cuda)

本人计算机配置较低,无GPU,所以在安装caffe时候,没有安装cuda之类的,也就是说只是基于CPU开展的,也没有安装anaconda。强烈建议首先把整片帖子看完后在根据自己机子的实际情况安装.主要...

caffe-Cuda7.5-cudnnv4-GPU-NugetPackages-Tesla k40-VS2013-Anaconda2-pycharm2016.2 win10

1.caffe  Cuda7.5  cudnnv4  GPU  NugetPackages Tesla k40  VS2013  Anaconda2  pycharm2016.2    win10  ...

Ubuntu 14.04 + Caffe配置记录(CPU模式,无GPU,无Cuda)

对于使用深度学习进行图像处理,Caffe是一个不错的框架选择。但是安装起来,并不是如想象中容易,稍不注意就会出错。 网上关于Ubuntu14.04下配置Caffe的资料很多,但是总是要自己亲自配置才能...

ubuntu+cuda8.0+opencv3 Caffe GPU环境配置

最近临近中期答辩,在总结一些以前碰到过的坑,以便后人乘凉。回顾了一下去年配置caffe的完整流程,去年双11买的神舟z7m电脑,性价比很高,显卡是GTX965m的,查了计算能力达5.2,刚买回来后就开...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)