POJ 1515 双联通分量

原创 2016年05月31日 15:44:39

点击打开链接

题意:给一个联通的无向图,然后问你将其中的边变为有向的,加边使其变成有向的联通图

思路:若无向图有双联通分量,那么这个分量里的元素可以变成有向图的强联通,这应该很好看出来,然后需要加的边是什么呢,就是这个图上的桥呗,是桥的话变成有向的就要加一条边,然后剩下的无向图的双联通分量可以用dfs搜一下,边搜边输出就可以了,将桥记录下来遇到桥的时候特殊处理一下,然后双联通分量里的边每一条只能走一次,将走得边和反向边标记一下就行了  PS:vector写这样反向边的真是麻烦

#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=1050;
struct edge{
    int to,flag,rev;
    edge(int a,int b,int c){to=a;flag=b;rev=c;}
};
vector<edge>G[maxn];
vector<int>GG[maxn];
int L[maxn],vis[maxn],E[maxn],stack1[maxn];
int n,m,k,kk;
void dfs(int x,int fa){
    vis[x]=1;L[x]=k;E[x]=k++;stack1[kk++]=x;
    for(unsigned int i=0;i<G[x].size();i++){
        edge t=G[x][i];
        if(t.to!=fa){
            if(!vis[t.to]){
                dfs(t.to,x);
                L[x]=min(L[x],L[t.to]);
            }else L[x]=min(L[x],E[t.to]);
        }
    }
    if(L[x]==E[x]){
        while(stack1[kk]!=x&&kk>0){
            L[stack1[kk-1]]=L[x];
            kk--;
            vis[stack1[kk]]=0;
        }
    }
}
void tarjan(){
    memset(E,0,sizeof(E));
    kk=0;k=1;
    for(int i=1;i<=n;i++) if(!E[i]) dfs(i,0);
    for(int i=1;i<=n;i++){
        for(unsigned int j=0;j<G[i].size();j++){
            edge t=G[i][j];
            if(L[i]!=L[t.to]){
                GG[i].push_back(t.to);
                G[i][j].flag=1;
            }
        }
    }
}
void print_dfs(int i,int fa){
    for(unsigned int j=0;j<G[i].size();j++){
        edge t=G[i][j];
        if(t.flag||t.to==fa) continue;
        printf("%d %d\n",i,t.to);
        G[t.to][t.rev].flag=1;
        G[i][j].flag=1;
        if(!vis[t.to]){
            vis[t.to]=1;
            print_dfs(t.to,i);
        }
    }
}
int main(){
    int a,b,cas=1;
    while(scanf("%d%d",&n,&m)!=-1){
        if(n==0&&m==0) break;
        for(int i=0;i<maxn;i++) G[i].clear();
        for(int i=0;i<maxn;i++) GG[i].clear();
        memset(vis,0,sizeof(vis));
        for(int i=0;i<m;i++){
            scanf("%d%d",&a,&b);
            G[a].push_back(edge(b,0,G[b].size()));
            G[b].push_back(edge(a,0,G[a].size()-1));
        }
        tarjan();
        memset(vis,0,sizeof(vis));
        printf("%d\n\n",cas++);
        for(int i=1;i<=n;i++){
            if(GG[i].size()==0&&vis[i]==0){
                vis[i]=1;
                print_dfs(i,0);
            }else{
                for(unsigned int j=0;j<GG[i].size();j++){
                    int t=GG[i][j];
                    printf("%d %d\n",i,t);
                }
            }
        }
        puts("#");
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj 3177 poj 3352 (边双连通分量裸题+缩点)

题目:http://poj.org/problem?id=3177 题意: 这两题几乎一样,都是给一个连通图,问最少加几条边可以得到边双连通图。 分析: 先求出边双连通分量(low[i]值相...

HDU2255 奔小康赚大钱【二分图最佳匹配】

题目大意: 村里要分房子。有N家老百姓,刚好有N间房子,考虑到每家都要有房住,每家必须分配到一间房子且 只能分配到一间房子。另外, 村长为了得到最大利益,让老百姓对房子进行估价。比如有3件房子,一 家...

POJ3565 Ants【二分图最佳匹配】

题目大意: 在坐标系中有N只蚂蚁,N棵苹果树,给你蚂蚁和苹果树的坐标。让每只蚂蚁去一棵苹果树, 一棵苹果树对应一只蚂蚁。这样就有N条直线路线,问:怎样分配,才能使总路程和最小,且 N条线不相交。 思...

POJ 1515 Street Directions 边双连通分量 + dfs

题目:http://poj.org/problem?id=1515 题意:给定一个无向连通图,对图中的尽量多的边定为单向边,使之成为一个强连通图,对于无法定成单向边的,就定为双向边 思路:显然...

poj 1515 Street Directions(双连通分量)

题意:给出一个连通图,边是双向边,要求令尽可能多的双向边改成单向边,并且图还是连通的(强连通)。 思路:这题其实不太难搞。我们可以想一下,那些边是一定不能改造的?没错,是桥,如果桥被改成单向边,那么...
  • qian99
  • qian99
  • 2014年01月16日 16:03
  • 459

POJ 1515 无向连通图定向边改造为强连通 边双连通

题意: n个点m条无向边(保证图连通) 问:把尽量多的无向边定向,使得最终图保持强连通的特性。 输出: 案例数 最终图的所有单向边 ( 若是不能被定向的无向边则输出u,v && v,u表示2条无向边 ...

POJ 2942 Knights of the Round Table 点双联通分量

Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 13183 ...

POJ 3352 Road Construction 边双联通分量

题目:http://poj.org/problem?id=3352 题意:加上最少的边,使得改造后的图中去掉任意一条边后图依然连通,题中任意两个点之间不会有重边 思路:删掉任意一条边图依然连通...

(点双联通分量模板)POJ 2942 Knights of the Round Table 圆桌骑士

Knights of the Round TableTime Limit: 7000MS Memory Limit: 65536K DescriptionBeing a knight is...
  • w4149
  • w4149
  • 2017年07月12日 15:20
  • 101

POJ 3352|Road Construction|边双联通分量|Tarjan

POJ 3352 Road Construction至少加几条边使原无向图边双联通。 tarjan求出边双联通分量后缩点成一棵树。 那么一棵树要实现边双联通显然是叶节点间连边,所以边数是 ⌈le...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1515 双联通分量
举报原因:
原因补充:

(最多只允许输入30个字)