POJ 1515 双联通分量

原创 2016年05月31日 15:44:39

点击打开链接

题意:给一个联通的无向图,然后问你将其中的边变为有向的,加边使其变成有向的联通图

思路:若无向图有双联通分量,那么这个分量里的元素可以变成有向图的强联通,这应该很好看出来,然后需要加的边是什么呢,就是这个图上的桥呗,是桥的话变成有向的就要加一条边,然后剩下的无向图的双联通分量可以用dfs搜一下,边搜边输出就可以了,将桥记录下来遇到桥的时候特殊处理一下,然后双联通分量里的边每一条只能走一次,将走得边和反向边标记一下就行了  PS:vector写这样反向边的真是麻烦

#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=1050;
struct edge{
    int to,flag,rev;
    edge(int a,int b,int c){to=a;flag=b;rev=c;}
};
vector<edge>G[maxn];
vector<int>GG[maxn];
int L[maxn],vis[maxn],E[maxn],stack1[maxn];
int n,m,k,kk;
void dfs(int x,int fa){
    vis[x]=1;L[x]=k;E[x]=k++;stack1[kk++]=x;
    for(unsigned int i=0;i<G[x].size();i++){
        edge t=G[x][i];
        if(t.to!=fa){
            if(!vis[t.to]){
                dfs(t.to,x);
                L[x]=min(L[x],L[t.to]);
            }else L[x]=min(L[x],E[t.to]);
        }
    }
    if(L[x]==E[x]){
        while(stack1[kk]!=x&&kk>0){
            L[stack1[kk-1]]=L[x];
            kk--;
            vis[stack1[kk]]=0;
        }
    }
}
void tarjan(){
    memset(E,0,sizeof(E));
    kk=0;k=1;
    for(int i=1;i<=n;i++) if(!E[i]) dfs(i,0);
    for(int i=1;i<=n;i++){
        for(unsigned int j=0;j<G[i].size();j++){
            edge t=G[i][j];
            if(L[i]!=L[t.to]){
                GG[i].push_back(t.to);
                G[i][j].flag=1;
            }
        }
    }
}
void print_dfs(int i,int fa){
    for(unsigned int j=0;j<G[i].size();j++){
        edge t=G[i][j];
        if(t.flag||t.to==fa) continue;
        printf("%d %d\n",i,t.to);
        G[t.to][t.rev].flag=1;
        G[i][j].flag=1;
        if(!vis[t.to]){
            vis[t.to]=1;
            print_dfs(t.to,i);
        }
    }
}
int main(){
    int a,b,cas=1;
    while(scanf("%d%d",&n,&m)!=-1){
        if(n==0&&m==0) break;
        for(int i=0;i<maxn;i++) G[i].clear();
        for(int i=0;i<maxn;i++) GG[i].clear();
        memset(vis,0,sizeof(vis));
        for(int i=0;i<m;i++){
            scanf("%d%d",&a,&b);
            G[a].push_back(edge(b,0,G[b].size()));
            G[b].push_back(edge(a,0,G[a].size()-1));
        }
        tarjan();
        memset(vis,0,sizeof(vis));
        printf("%d\n\n",cas++);
        for(int i=1;i<=n;i++){
            if(GG[i].size()==0&&vis[i]==0){
                vis[i]=1;
                print_dfs(i,0);
            }else{
                for(unsigned int j=0;j<GG[i].size();j++){
                    int t=GG[i][j];
                    printf("%d %d\n",i,t);
                }
            }
        }
        puts("#");
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

poj 3177 poj 3352 (边双连通分量裸题+缩点)

题目:http://poj.org/problem?id=3177 题意: 这两题几乎一样,都是给一个连通图,问最少加几条边可以得到边双连通图。 分析: 先求出边双连通分量(low[i]值相...
  • hjt_fathomless
  • hjt_fathomless
  • 2016年10月02日 19:12
  • 194

poj 3352 Road Construction(点双连通分量缩点+缩点树变为双连通分量)

题目链接: 点击打开链接 题目大意: 给出一张图,问最少加多少条边,将他变成边双连通图 题目分析: 首先进行点双连通图缩点,(点双连通图一定是边双连通图),然后得到一棵树,对于一棵树,我...
  • qq_24451605
  • qq_24451605
  • 2015年07月15日 15:43
  • 786

Tarjan三大算法之双连通分量(双连通分量)

定义: 对于一个连通图,如果任意两点至少存在两条点不重复路径,则称这个图为点双连通的(简称双连通);如果任意两点至少存在两条边不重复路径,则称该图为边双连通的。点双连通图的定义等价于任意两条边都同在...
  • fuyukai
  • fuyukai
  • 2016年05月03日 16:18
  • 9113

无向图的割顶和桥,无向图的双连通分量入门详解及模板

割顶和桥:对于无向图G,如果删除某个节点u后,连通分量数目增加,则称u为图的割顶;如果删除某条边后,连通分量数目增加,则称该边为图的桥。对于连通图删除割顶或桥后都会使得图不再连通以下我,我们利用dfs...
  • STILLxjy
  • STILLxjy
  • 2017年04月14日 22:56
  • 1235

Tarjan三大算法之双连通分量(割点,桥)

Robert Endre Tarjan是一个美国计算机学家,他传奇的一生中发明了无数算法,统称为Tarjan算法。其中最著名的有三个,分别用来求解 1) 无向图的双连通分量 2) 有向图的强连通分...
  • fuyukai
  • fuyukai
  • 2016年04月23日 11:25
  • 4942

无向图的双连通分量

无向图的双连通分量 点-双连通图:对于一个无向连通图,如果任意两个点至少存在两条”点不重复”的路径,则说这个图是点-双连通的.这个要求等价于任意两条边都在同一个简单环内,即内部无割顶. 注意:孤立...
  • u013480600
  • u013480600
  • 2014年06月16日 21:17
  • 1036

双连通分量模板以及对一些不好理解点的解释

概念: 双连通分量有点双连通分量和边双连通分量两种。若一个无向图中的去掉任意一个节点(一条边)都不会改变此图的连 通性,即不存在割点(桥),则称作点(边)双连通图。一个无向图中的每一个极大点(边)双连...
  • yo_bc
  • yo_bc
  • 2017年06月09日 18:32
  • 321

无向图的割点,桥,双连通分量,有向图的强连通分量总结

一、无向图的割点,桥,双连通分量
  • Guard_Mine
  • Guard_Mine
  • 2014年08月17日 13:30
  • 1589

tarjan算法(边的双连通分量)

hiho链接:http://hihocoder.com/contest/hiho53/problem/1 边的双连通分量定义:对于一个无向图的子图,当删除其中任意一条边后,不改变图内点的连通...
  • qwe2434127
  • qwe2434127
  • 2015年08月09日 18:05
  • 1302

无向图的双连通分量

无向图的双连通分量         点-双连通图:一个连通的无向图内部没有割点,那么该图是点-双连通图。         注意:孤立点,以及两点一边这两种图都是点-双连通的。因为它们都是内部无割点...
  • u013480600
  • u013480600
  • 2015年04月02日 18:45
  • 2250
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1515 双联通分量
举报原因:
原因补充:

(最多只允许输入30个字)