关闭

轨迹平滑方法

标签: 数据轨迹平滑
1394人阅读 评论(0) 收藏 举报
分类:

本文主要处理三维空间序列点,对于二维序列点也同样适用。主要介绍一下几种平滑方式,并针对三维轨迹进行平滑处理:

1. 滑动平均平滑(Moving average):

邻域内的数据点做平均代替邻域的中心点值,除了一般滑动平均,还有加权滑动平均和指数滑动平均。


2.Savitzky-Golay滤波(SG滤波):

基于局域多项式最小二乘法拟合的滤波方法

拟合多项式:


最小二乘残差:


可以采用卷积运算的方式实现:


平滑系数:



3. Spline样条曲线平滑

2次B样条曲线参数方程:


3次B样条曲线参数方程:


实验结果:蓝色点为原始点。


5点MA平滑


7点MA平滑


2次B样条平滑(绿色点为原始点)


3次B样条平滑



SG5点2次平滑


SG7点3次平滑


从以上数据可以看出,对于本文的序列点采用MA平滑效果较好,但是MA平滑会造成部分特征点模糊的情况,对于不同数据选择合适的平滑方式至关重要。


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:10749次
    • 积分:294
    • 等级:
    • 排名:千里之外
    • 原创:19篇
    • 转载:2篇
    • 译文:0篇
    • 评论:4条
    文章分类
    最新评论