关闭

LCS(Longest Common Substring)算法

标签: 数据结构算法
69人阅读 评论(0) 收藏 举报
分类:

在听数据结构的时候讲到了LCS的一个有意思的算法,mark一下:

#include<iostream>
#include<string>
#include<vector>
using namespace std;

int lcs(const string, const string);
int max(int, int);

int main() {
    //test
    cout << lcs("qqqqaqaqqqaq", "zzzazazazz") << endl;
    system("pause");
}

int lcs(const string a, const string b) {
    vector<vector<int>> temp(a.size());
    for (int i = 0; i < a.size(); i++) temp[i].resize(b.size());

    for (int i = 0; i < a.size(); i++) {
        if (a[i] == b[0] || i != 0 && temp[i - 1][0] == 1) temp[i][0] = 1;
        else temp[i][0] = 0;
    }
    for (int j = 0; j < b.size(); j++) {
        if (b[j] == a[0] || j != 0 && temp[0][j - 1] == 1) temp[0][j] = 1;
        else temp[0][j] = 0;
    }

    for (int i = 1; i < a.size(); i++) {
        for (int j = 1; j < b.size(); j++) {
            if (a[i] == b[j]) temp[i][j] = 1 + temp[i - 1][j - 1];
            else temp[i][j] = max(temp[i][j - 1], temp[i - 1][j]);
        }
    }


    for (int i = 0; i < a.size(); i++) {
        for (int j = 0; j < b.size(); j++) {
            cout << temp[i][j];
            if (j != b.size()) cout << " ";
        }
        cout << endl;
    }

    return temp[a.size() - 1][b.size() - 1];
}

int max(int a, int b) { return a > b ? a : b; }

它将字符串问题利用二维数组求路径的方法给出了解,而且复杂度仅为O(n),蛮好蛮好

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:609次
    • 积分:44
    • 等级:
    • 排名:千里之外
    • 原创:4篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档