数据结构-二叉树(Binary Tree)

原创 2017年01月02日 22:05:32
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define LIST_INIT_SIZE 10
#define LISTINCREMENT 100
#define STACK_INIT_SIZE 100
#define STACKINCREMENT 10
#define TRUE 1
#define FALSE 0
#define true 1
#define false 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
#define OPSETSIZE 7
#define MAXQSIZE 100

typedef char TelemType;
typedef int Status;
typedef struct BiTNode
{
    TelemType data;
    struct BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
typedef BiTree SElemType;

typedef struct
{
    SElemType *base;
    SElemType  *top;
    int stacksize;
} SqStack;

Status InitStack(SqStack *S);
Status Push(SqStack *S, SElemType e);
Status Pop(SqStack *S, SElemType *e);
Status StackEmpty(SqStack S);
Status CreateBiTree(BiTree *T);
Status PrintElement(TelemType e);
Status visit(TelemType e);
Status PreorderTraverse(BiTree T, Status (*visit)(TelemType e));
Status InorderTraverse(BiTree T, Status (*visit)(TelemType e));
Status PostorderTraverse(BiTree T, Status (*visit)(TelemType e));

int main()
{
    BiTree T;
    CreateBiTree(&T);
    printf("PreorderTraverse:");
    PreorderTraverse(T, visit);
    printf("\nInorderTraverse_1:");
    InorderTraverse(T, visit);
    printf("\nInorderTraverse_2:");
    InorderTraverse2(T, visit);
    printf("\nPostorderTraverse:");
    PostorderTraverse(T, visit);
    return 0;
}

Status InitStack(SqStack *S)
{
    S->base = (SElemType *)malloc(STACK_INIT_SIZE*sizeof (SElemType));
    if (!S->base) exit (OVERFLOW);
    S->top = S->base;
    S->stacksize = STACK_INIT_SIZE;
    return OK;
}
Status Push(SqStack *S, SElemType e)
{
    if (S->top - S->base >= S->stacksize) //栈满
    {
        S->base = (SElemType *)realloc
               (S->base, (S->stacksize + STACKINCREMENT)
                * sizeof(SElemType));
        if (!S->base) exit (OVERFLOW);
        S->top   = S->base + S->stacksize;
        S->stacksize += STACKINCREMENT;
    }  // if
    *S->top++ = e;
    return OK;
}  //Push
Status Pop(SqStack *S, SElemType *e)
{
    if(S->top == S->base)return ERROR;
    *e = *--S->top;
    return OK;
} //Pop
Status StackEmpty(SqStack S)
{
    if (S.base == S.top)
        return TRUE;
    return FALSE;
}

Status CreateBiTree(BiTree *T)
{
    char ch;
    ch = getchar();
    if (ch == ' ')
        *T = NULL;
    else
    {
        if (!(*T = (BiTNode *) malloc(sizeof (BiTNode))))
            exit(OVERFLOW);
        (*T)->data = ch;
        CreateBiTree(&((*T)->lchild));
        CreateBiTree(&((*T)->rchild));
    }
    return OK;
}

Status PrintElement(TelemType e)
{
    printf("%c ", e);
    return OK;
}
Status visit(TelemType e)
{
    printf("%c ", e);
    return OK;
}
Status  PreorderTraverse(BiTree T, Status (*visit)(TelemType e))
{
    if (T)
    {
        if (visit(T->data))
            if (PreorderTraverse(T->lchild, visit))
                if (PreorderTraverse(T->rchild, visit)) return OK;
        return ERROR;
    }
    return OK;
}

Status InorderTraverse(BiTree T, Status (*visit)(TelemType e) )
{
    if (T)
    {
        if (InorderTraverse(T->lchild, visit))
            if (visit(T->data))
                if (InorderTraverse(T->rchild, visit)) return OK;
        return ERROR;
    }
    return OK;
}

Status InorderTraverse2(BiTree T, Status (*visit)(TelemType e))
{
    SqStack S;
    InitStack(&S);
    BiTree p = T;
    while( p || !StackEmpty(S) )
    {
        while (p)
        {
            Push(&S, p);
            p = p -> lchild;
        }
        if( !StackEmpty(S))
        {
            Pop(&S, &p);
            if (!visit(p -> data))
                return  ERROR;
            p = p -> rchild;
        }
    }
    return OK;
}

Status  PostorderTraverse(BiTree T, Status (*visit)(TelemType e))
{
    if (T)
    {
        if (PostorderTraverse(T->lchild, visit))
            if (PostorderTraverse(T->rchild, visit))
                if (visit(T->data))  return OK;
        return ERROR;
    }
    return OK;
}



版权声明:Honor is in the heart.

相关文章推荐

数据结构:线索二叉树(Threaded Binary Tree)

我们知道满二叉树只是一种特殊的二叉树,大部分二叉树的结点都是不完全存在左右孩子的,即很多指针域没有被充分地利用。另一方面我们在对一棵二叉树做某种次序遍历的时候,得到一串字符序列,遍历过后,我们可以知道...

数据结构之二叉树的遍历 HDU1710 Binary Tree Traversals

Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/...

※数据结构※→☆非线性结构(tree)☆============二叉树 链式存储结构(tree binary list)(二十一)

二叉树          在计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二...

※数据结构※→☆非线性结构(tree)☆============二叉树 顺序存储结构(tree binary sequence)(十九)

二叉树          在计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二...

※数据结构※→☆非线性结构(tree)☆============二叉树结点 顺序存储结构(tree node binary sequence)(十八)

二叉树          在计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉...

数据结构-二叉树(binary tree)-二叉查找树(binary search tree)

二叉树(binary)二叉树就是节点的度不大于2的树,即树中每个节点的子节点最多只有两个。每个节点的子节点分为左子节点和右子节点,并且左右子节点的顺序不能改变。1. 二叉树分类二叉树分为满二叉树、完全...

数据结构 《5》----二叉搜索树 ( Binary Search Tree )

本文分析了二叉搜索树的各种操作的具体实现。

【数据结构与算法基础】二叉查找树 / Binary Search Tree

树, 二叉树, 二叉查找树, 递归, Tree, Binary Tree, Binary Search Tree, Recursion

UVA 112 & POJ 1145 Tree Summing(数据结构,二叉树,栈)

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=104&page=show_problem&...

白话数据结构之二叉树(Same Tree)java,C实现

小哥我今日突然诗性大发想写点什么,可是又找不到头绪于是乎直接打开google,登陆leetcode 找到database 目录栏的tree栏目。闲话我们从倒数的第一个题目开始先带着大家从easy 部分...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)