OpenCV 系列 --- 形态学操作(膨胀、腐蚀)

原创 2016年08月28日 17:44:27

形态学操作是基于形状的一系列图像处理操作,基本的运算包括:腐蚀、膨胀、开、闭等。在进行其他算法研发时,我基本只用膨胀与腐蚀操作,因此本文只介绍这两种操作,其他的可以相似地进行。

关键点

  1. 操作是对图像中的高亮区域进行的,比如膨胀,就是将图像中的高亮区域扩大。
  2. 它们可以达到的目的
    • 去除噪声
    • 分离出独立的元素或者连接独立的元素
    • 可以求图像梯度或者图像中的小洞

测试用图

为了更加清晰地显示出操作前后的差距,采用如下图所示的二值图
这里写图片描述
一定要注意,形态学操作不光可以用在二值图,也可以用在灰度图,甚至可以用在彩色图。

基本原理

  1. 膨胀
    膨胀就是利用一个核(叫做结构元素)与图像进行卷积。随着核的移动,每次都取核覆盖区域的最大像素值,因此最终完成的效果是将高亮区域扩大。
  2. 腐蚀
    同样地,腐蚀也是卷积操作。随着核的移动,每次都取核覆盖区域的最小像素值,因此最终完成的效果是将高亮区域缩小。

代码示例

以下代码是OpenCV文档中给出的一段代码,比较能说明问题,我加了一些注释

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "highgui.h"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// 全局变量
Mat src, erosion_dst, dilation_dst;

int erosion_elem = 0;
int erosion_size = 0;
int dilation_elem = 0;
int dilation_size = 0;
int const max_elem = 2;
int const max_kernel_size = 21;

/** Function Headers */
void Erosion( int, void* );//腐蚀操作
void Dilation( int, void* );//膨胀操作

/** @function main */
int main()
{
  /// Load an image
  src = imread("coins.png");

  if( !src.data )
  { 
      return -1; 
  }

  /// Create windows
  namedWindow( "Erosion Demo", CV_WINDOW_AUTOSIZE );
  namedWindow( "Dilation Demo", CV_WINDOW_AUTOSIZE );

//Element:\n 0: Rect \n 1: Cross \n 2: Ellipse

  /// 腐蚀操作滚动条
  createTrackbar( "Element:", "Erosion Demo",&erosion_elem, max_elem,Erosion );
  createTrackbar( "Kernel", "Erosion Demo",&erosion_size, max_kernel_size,Erosion );

  /// 膨胀操作滚动条
  createTrackbar( "Element:", "Dilation Demo",&dilation_elem, max_elem,Dilation );
  createTrackbar( "Kernel", "Dilation Demo",&dilation_size, max_kernel_size,Dilation );

  // 开始
  Erosion( 0, 0 );
  Dilation( 0, 0 );

  waitKey(0);
  return 0;
}

/**  @function Erosion  */
void Erosion( int, void* )
{
  int erosion_type;

  if( erosion_elem == 0 ) 
  {  
      erosion_type = MORPH_RECT;  //矩形结构元素
  }
  else if( erosion_elem == 1 ) 
  { 
      erosion_type = MORPH_CROSS;  //十字结构元素
  }
  else if( erosion_elem == 2) 
  {
      erosion_type = MORPH_ELLIPSE;//椭圆结构元素
  }

//生成核(结构元素)
  Mat element = getStructuringElement( erosion_type,Size( 2*erosion_size + 1, 2*erosion_size+1 ),
                                       Point( erosion_size, erosion_size ) );

  //腐蚀操作
  erode( src, erosion_dst, element );
  imshow( "Erosion Demo", erosion_dst );
}

/** @function Dilation */
void Dilation( int, void* )
{
  int dilation_type;

  if( dilation_elem == 0 ) 
  { 
      dilation_type = MORPH_RECT; //矩形结构元素
  }
  else if( dilation_elem == 1 ) .
  { 
      dilation_type = MORPH_CROSS; //十字结构元素
  }
  else if( dilation_elem == 2)
  { 
      dilation_type = MORPH_ELLIPSE; //椭圆结构元素
  }

//生成核(结构元素)
  Mat element = getStructuringElement( dilation_type,Size(2*dilation_size + 1, 2*dilation_size+1 ),
                                       Point( dilation_size, dilation_size ) );
  //腐蚀操作
  dilate( src, dilation_dst, element );
  imshow( "Dilation Demo", dilation_dst );
}

结果

  1. 采用7*7矩形结构元素
    这里写图片描述
    左图是腐蚀、右图为膨胀。可以看出,腐蚀缩小了白色(高亮)区域,而膨胀扩大了白色区域。
  2. 采用十字结构元素,大小为7,结果如下
    这里写图片描述
    左图是腐蚀、右图为膨胀。可以看出,腐蚀缩小了白色(高亮)区域,而膨胀扩大了白色区域。
  3. 采用椭圆结构元素,大小为15,结果如下
    这里写图片描述

可以看出,当白色区域为圆形时,采用椭圆形的结构元素生成的结果较为规则,圆形结构保持较为完整。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Python下opencv使用笔记(六)(图像的形态学转换)

形态学一般是使用二值图像,进行边界提取,骨架提取,孔洞填充,角点提取,图像重建等等。常用的形态学操作时腐蚀与膨胀,在他们的基础上演变出一些变体,包括开运算、闭运算、梯度等等。形态学一般是对二值图像进行...
  • on2way
  • on2way
  • 2015-07-12 15:59
  • 3175

OpenCV-Python—形态学转换

OpenCV图像处理篇之腐蚀与膨胀

转载请注明出处:http://xiahouzuoxin.github.io/notes腐蚀与膨胀腐蚀和膨胀是图像的形态学处理中最基本的操作,之后遇见的开操作和闭操作都是腐蚀和膨胀操作的结合运算。腐蚀和...

【OpenCV入门教程之十】 形态学图像处理(一):膨胀与腐蚀

形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。 数学形态学(Math...

腐蚀和膨胀在opencv上的学习

简单介绍:    图像处理离不开矩阵卷积,这个也不例外。   膨胀的卷积图:   注意的是,源图像不可与目标图像设为同一个,否则第三行和第四行后四个将全被标记。这在O...

OpenCV-Python教程(4、形态学处理)

提示: 转载请详细注明原作者及出处,谢谢! 本文介绍使用OpenCV-Python进行形态学处理本文不介绍形态学处理的基本概念,所以读者需要预先对其有一定的了解。 定义结构元素 形态学处理的核心就...

opencv python 学习第三天 图片腐蚀和膨胀

定义一个5x5的结构:kernel=np.uint8(np.zeros((5,5))) (1)腐蚀操作: 定义了一个5×5的十字形结构元素 其实是一个5x5的矩阵,我们知道在图片的腐蚀过程,对...

OpenCV&图像处理_3:以腐蚀[eroding]和膨胀[dilating]为基础的形态学操作和图像金字塔[image pyramids]

若有需要q点击查看原文

OpenCV学习笔记(六) 滤波器 形态学操作(腐蚀、膨胀等)

转自:OpenCV 教程  另附:计算机视觉:算法与应用(2012),Learning OpenCV(2009) 平滑图像:滤波器 平滑 也称 模糊, 是一项简单且使用频率很高的图像处理...

OpenCV学习笔记-形态学操作-腐蚀膨胀-开闭运算

一个可以调节参数的形态学例题,代码如下:#include #include #include #include IplImage* src = 0; IplImage* dst = 0; Ip...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)