关闭

东子说算法

标签: 排序算法
139人阅读 评论(0) 收藏 举报
分类:

激励我写博文有很大的原因是,在校电面的时候,被问到了很多基础算法问题。当时瞬间懵哔了。痛定思痛。决定好好复习下常用的基础算法。

一).常见的排序算法。

1).简单选择排序。

基本思想:每一趟在后面n-1个待排的数据中选出一个最小(大)的数据作为有序序列的第i个元素。之后依次循环遍历。

简单选择排序是稳定排序,平均时间复杂度为O(n²),最坏时间复杂度为O(n²),空间复杂度O(1);

static void swap(int a[], int i, int j)
{
	int tmp = 0;
	tmp = a[i];
	a[i] = a[j];
	a[j] = tmp;
}
void SelectSort(int a[], int n)
{
	if (!a && n < 0) return;
	int i = 0, j = 0;
	int k = -1;
	for (; i < n; i++)
	{
		k = i;
		for (j = i + 1; j < n; j++)
		{
			if (a[j] < a[k])
				k = j;
		}
		swap(a, i, k);
	}
}

2).冒泡排序算法

  基本思想:将序列中第一个元素与第二个元素进行比较,若为逆序(升序)a[2] > a[1](a[2] < a[1])则交换,然后再比较第二个元素与第三个元素,依次进行,每趟选出一个最大(小)值。冒泡排序已选择排序的区别:选择排序是每趟与最小(大)值交换,冒泡排序是每趟移动相邻的位置。

  小技巧: 可以在冒泡排序中定义一个变量,用于表示冒泡排序受否排列好了。如果要有一个已经基本有序的序列,则可以减少循环次数。

  冒泡排序属于交换排序,是稳定排序。平均时间复杂度为O(n²),最坏时间复杂度为O(n²),空间复杂度O(1);

void BubbleSort(int a[], int len)
{
	if (!a && len < 0) return;
	int i = 0, j = 0;
	int exchange = 1;
	for (; (i < len - 1) && exchange; i++)
	{
		exchange = 0;
		for (j = 0; j < len - 1 - i; j++)
		{
			if (a[j + 1] < a[j])
			{
				swap(a, j, j + 1);
				exchange = 1;
			}
		}
	}
}

3).快速排序

  基本思想:通过一趟排序将序列分割成独立的两部分,其中一部分的所有数据要比另一部分的所有数据小。基准数据排在两个部分的中间。依次快排两个模块。现在这个算法分为两个过程,一个是根据基准数据划分模块,一个是递归的划分模块及排列数据。

  快速排序也属于交换排序,不稳定排序。平均时间复杂度为O(nlog2n), 最坏时间复杂度为O(n²),空间复杂度为O(nlog2n);

int partion(int a[], int low, int high)
{
	if (!a) return -1;
	int privot = a[low];
	while (low < high)
	{
		while ((low < high) && (a[high] > privot))
			high--;
		swap(a, low, high);
		while ((low < high) && (a[low] <= privot))
			low++;
		swap(a, low, high);
	}
	return low;
}

void Qsort(int a[], int low, int high)
{
	int privot = 0;
	if (low < high)
	{
		privot = partion(a, low, high);
		Qsort(a, low, privot - 1);
		Qsort(a, privot + 1, high);
	}
}
void Quicksort(int a[], int len)
{
	Qsort(a, 0, len - 1);
}

4).归并排序

  基本思想:与快速排序相反,选择排序是先排序再分组,归并排序是先分组再进行排序。归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。

  归并排序是稳定排序。平均时间复杂度为O(nlog2n), 最坏时间复杂度为O(nlog2n),空间复杂度为O(n);

//对划分的序列进行排序,并放入新的序列中
void Merge(int a[], int des[], int low, int mid, int high)
{
	int i = low;
	int j = mid + 1;
	int k = low;
	while ((i < mid) && (j < high))
	{
		if (a[i] < a[j])
			des[k++] = a[i++];
		else
			des[k++] = a[j++];
	}
	while (i <= mid)               ////一个有序表取完,将有序表中剩余的元素复制到剩下的单元。
		des[k++] = a[i++];
	while (j <= high)
		des[k++] = a[j++];
}
//递归的划分序列,直到总序列中只有一个元素及low = high
void Msort(int a[], int des[], int low, int high, int max)
{
	if (!a) return;
	int mid = 0;
	if (low == high)
	{
		des[low] = a[low];
	}
	else
	{
		mid = (low + high) / 2;
		int *space = malloc(sizeof(int)* max);
		if (!space)
			return;
		else
		{
			Msort(a, space, low, mid, max);
			Msort(a, space, mid + 1, high, max);
			Merge(space, des, low, mid, high);
		}
		free(space);
	}
}

5).插入排序

  基本思想:每步将一个待排序的记录,按照其大小插入到前面的已经排序好的序列中,直到数据全部插入为止。

  插入排序是稳定排序,平均时间复杂度为O(n²),最坏时间复杂度为O(n²),空间复杂度为O(1);

void InsertSort(int a[], int len)
{
	if (!a) return;
	int i = 0, j = 0;
	int k = 0;
	int tmp = 0;
	for (i = 1; i < len; i++)
	{
		k = i;
		tmp = a[k];
		for (j = i - 1; (j >= 0) && (a[j] > tmp); j--)
		{
			a[j + 1] = a[j];
			k = j;
		}
		a[k] = tmp;
	}
}







0
0
查看评论

今日头条面试算法题——确定ABCDE五个学校名次

题目描述: A、B、C、D、E五个学校,A说E是第一,B说B是第二,C说A是最差的,D说C不是最好的,E说D是最好的。只有第一和第二名说的是对的,其他说的都是错的,请编程确定五个学校的名次。 先上代码,再说思路。 代码: #include int main() { int a, b, ...
  • universe_ant
  • universe_ant
  • 2017-04-28 23:45
  • 902

db_LINK详解东子

database link作用 database link,它是用来更方便的一个数据库中访问另一个数据库(包括本地和远程的,道理是一样的),一开始,很多人会发生误解,其实是在本地建立的。即数据库连接只是连到别的数据库的快捷方式。 一、創建database link 第一种: 1.根据远端...
  • vipyhd
  • vipyhd
  • 2012-08-19 10:30
  • 4758

【ISO】混合App中内嵌的浏览器,究竟是否需要单实例化?

先前了解过些关于混合App知识,后来学习了些node后,进行了些实践。 iTunes 的 App Store 中的“会友行” 是一款混合app,混合框架是自己写的,现在打算把混合框架单独剥离出来开源,Git地址:plusmancn/G5 · GitHub 现在碰到一个问题:混合App中...
  • wide288
  • wide288
  • 2015-09-30 11:04
  • 646

算法导论【一】——算法作用微论

非形式地说,算法(algorithm)就是任何良定义的计算过程,该过程某个值或值的集合作为输入并产生某个值或值的集合作为输出。这种算法就是把输入准换成输出的计算步骤的一个序列。
  • woodhost
  • woodhost
  • 2017-07-31 18:01
  • 79

(决策树)ID3算法

从信息论知识中我们直到,期望信息越小,信息增益越大,从而纯度越高。所以ID3算法的核心思想就是以信息增益度量属性选择,选择分裂后信息增益最大的属性进行分裂。下面先定义几个要用到的概念。       设D为用类别对训练元组进行的划分,则D的熵(ent...
  • myl1992
  • myl1992
  • 2015-03-30 14:37
  • 330

东子破解2

我们今天讲的是bash: 今天是最有用的。 ls /bin/×.sh 可以看到我们要看到的 所有的shell strace ls(命令) 查看各种命令的api ksh 。。。ibm 公司的shell aix系统的 bash的内部命令which  echo $APTH...
  • vipyhd
  • vipyhd
  • 2012-08-11 12:41
  • 4427

东子文档集成

1:安装:fastcgi HowTo configure Apache to run Redmine HowTo configure Apache to run Redmine For CentOS 5 Assumptions Myths Basic Steps Error Messages an...
  • vipyhd
  • vipyhd
  • 2013-10-18 15:04
  • 752

算法与数据结构对程序员的重要性

曾经有个说法,程序=数据结构+算法。这在面向过程的编程语言流行的年代是很受推崇的。 然而,随着时代的发展,各种编程语言的出现,各种编程模式的发明,面向对象、设计模式、框架、模型等各种概念早已淹没了当年那个简单的提法。 那么,在这个多样化的年代,如果想立志做编程开发,还有没有必要学好数据结构和...
  • vampireshj
  • vampireshj
  • 2013-09-25 17:26
  • 1687

东子破解的第一天

第一天:东子破解  Jquery.("选择器")  或者是$("选择器") 我们在美化斑马表格的时候我们有javascript 我们要写很多代码 可是我们用jquery的时候我们只是用: $("table tr:nth-...
  • vipyhd
  • vipyhd
  • 2012-05-04 17:23
  • 4842

硬盘分区总结(小东子)

硬盘分区总结(小东子)说明:文章交流使用,转载时请保持文章的整体性,杜绝商业目的。本文章是最近本人学习的总结。交流方式:yuanjiandong512@163.com  一 总述   1、硬盘分区步骤:      ⑴ 硬...
  • yjdyjd_0
  • yjdyjd_0
  • 2007-02-05 10:34
  • 840
    个人资料
    • 访问:146次
    • 积分:11
    • 等级:
    • 排名:千里之外
    • 原创:1篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档
    阅读排行