分治归并——排序

原创 2015年11月19日 20:14:36

归并排序:

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

/*************************************************************************
    > File Name: merge_sort.cpp
    > Author: dulun
    > Mail: dulun@xiyoulinux.org
    > Created Time: 2015年11月19日 星期四 18时48分06秒
 ************************************************************************/

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
using namespace std;

/*
  归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。  首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。
 */

//将两个有序数组a, b合并到C中
void EXAMPL_memeryarray(int a[], int n, int b[], int m, int c[])
{
    int i, j, k;
    i = j = k = 0;
    while(i < n && j < m){
//      依次比较两数组元素,取小的,存入c,继续
        if(a[i] < b[j]){
            c[k++] = a[i++];
        }
        else{
            c[k++] = b[j++];
        }
    }
//  将A或B中剩余元素存入c
    while(i < n){
        c[k++] = a[i++];
    }

    while(j < m){
        c[k++] = b[i++];
    }
}

/*可以看出合并有序数列的效率是比较高的,可以达到O(n)。 解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序  可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。
*/


//将两个有序数组a[fist...mid],b[mid....last]合并
void mergearry(int a[], int first, int mid, int last, int tmp[])
{
    int i = first, j = mid + 1;
    int m = mid, n = last;
    int k = 0;

    while(i <=m && j <= n)
    {
        if(a[i] <= a[j]){
            tmp[k++] = a[i++];
        }
        else{
            tmp[k++] = a[j++];
        }
    }

    while(i <= m){
        tmp[k++] = a[i++];
    }
    while(j <= n){
        tmp[k++] = a[j++];
    }

    for(i = 0; i < k; i++){
        a[first + i] = tmp[i];
    }
}

void mergesort(int a[], int first, int last, int tmp[])
{
    if(first < last){
        int mid = (first + last) / 2;
        mergesort(a, first, mid , tmp);
        mergesort(a, mid+1, last, tmp);
        mergearry(a, first, mid, last, tmp);
    }
}

int main()
{
    int a[] = {1, 2, 6, 3, 9, 245, 967 , 12341234,1235124,12,35,2,31,53,46,2,435,7,425, 845, 1, 7345, 2345, 3457};
    int n = sizeof(a) / sizeof(int);
    int *p = new int[n];

    if(p == NULL)
    {
        printf("memory error!\n");
        return 0;
    }

    mergesort(a, 0, n-1, p);
    delete[] p;

    for(int i = 0; i < n; i++)
    {
        printf("%d ", a[i]);
    }
    return 0;
}

/*归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。*/
版权声明:本文为博主原创文章,转载请注明出处:http://blog.csdn.net/dextrad_ihacker

相关文章推荐

分治法——归并排序

分治法:将原问题划分成n个规模较小而结构与原问题相似的子问题,递归的解决这些子问题,然后再合并其结果,就得到原问题的解。 步骤:分解-》解决-》合并。 归并排序算法分析: 这里我们有一个...

【算法学习】归并排序——基于分治思想

归并排序的核心就是分治,把大问题转换成小问题 照着算法导论,敲了一段代码,调了一下,这是适合自己用的,以后再要用到归并排序就懒得自己再想了,直接用这里的 #include using namesp...

分治法算法——归并排序

分治法算法中的经典——归并排序上一节,我讲了分治法的相关思想,并贴出数字旋转方阵的代码以及解决思想。算法的话,主要还是要靠自己领悟,要多思考,不会再去看看别人的思路。以下,我分析一下分治法算法中的经典...

老生常谈——分治法与归并排序

首先来决一个基本的问题:如何合并两个有序序列?

实用算法的分析与程序设计——分治算法(归并排序,快速排序)

有许多算法在结构上是递归的:为了解决一个给定问题,算法要一次或多次地调用其自身来解决相关的子问题。这些算法通常采用分治策略:将原问题分成n个规模较小而结构与原问题相似的子问题。递归地解这些子问题,然后...

算法08:归并(合并)排序——分治法Part4

(4)归并排序 给定一个数组,要求安袁术

分治——归并排序

归并排序() java代码如下: package 分治技术; /*分治法——归并排序 * 二路归并排序的分治策略是: (1)划分:将待排序序列r1, r2, …, rn划分为两个长度相等...

分治法——归并排序(MergeSort)

分治法的思想:将原问题分解为几个规模较小单类似于原问题的子问题,递归地求解这些子问题,然后再合并这些子问题来建立原问题的解。分治法法在每层递归时都有如下三个步骤:分解原问题为若干子问题,这些子问题是原...

【从零学习经典算法系列】分治策略实例——归并排序(Mergesort)

归并排序是递归算法的一个很好的实例,该算法的基本操作是合并两个已排序的表,因为这两个表是已排序的,所以若将输出放到第三个表中时,该算法可以通过对输入数据一趟排序来完成。 算法流程:基本的合并算法是取两...

数据结构——归并排序

  • 2017-06-17 10:30
  • 34KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)