labeled graph---some basic knowledge

转载 2012年03月21日 15:48:03

带标签属性的图

-----------一些常用的基础知识

1 图谓词与属性

许多算法和属性需要具有某种属性的图. 这些可以是基本的属性,诸如无向的,或更深的拓扑属性,诸如连通或非循环. 在某些领域,关键的问题是:如果我们替代顶点的名称,两个图是否是一样,诸如验证它们是否同构等.

基本属性

GraphQ — 验证一个表达式是否是一个图的对象

EdgeQ — 验证一个表达式是否是图的一条边

VertexQ — 验证一个表达式是否是图的一个顶点

局部结构属性

EmptyGraphQ  ▪ UndirectedGraphQ  ▪ DirectedGraphQ  ▪ LoopFreeGraphQ  ▪ SimpleGraphQ  ▪ WeightedGraphQ

全局结构属性

IsomorphicGraphQ — 验证顶点重命名后两个图是否一样

FindGraphIsomorphism — 以规则列表形式求图的同构

AcyclicGraphQ  ▪ BipartiteGraphQ  ▪ ConnectedGraphQ  ▪ EulerianGraphQ  ▪ HamiltonianGraphQ  ▪ PathGraphQ  ▪ TreeGraphQ

2 路径与圈

图的一个关键问题是导航. 尤其是找到两个顶点的最短路径,无论是找到迷宫的出口或公路网的导航. 最短路径的长度引起了自然测量的所有收集诸如图的直径. 如果不只是从一个顶点到另一个顶点的导航,您想以某种方式遍历整个图,您在寻找圈,那么欧拉与哈密尔顿圈提供了遍历图的每条边或顶点的路径.

最短路径

FindShortestPath — 求从源到目标的最短路径

ShortestPathFunction — 表示一个给出图中最短路径的函数

距离

GraphDistance — 两个顶点间最短路径的长度

GraphDistanceMatrix — 所有顶点对间的距离矩阵

最长最短路径

VertexEccentricity — 到每个其它顶点的最长最短路径

GraphRadius — 最小顶点离心率

GraphDiameter — 最大顶点离心率

GraphCenter — 具有最小离心率的顶点

GraphPeriphery — 具有最大离心率的顶点

拓扑路径

TopologicalSort — 给出为了与图拓扑相兼容的顶点

FindEulerianCycle — 求一个遍历每条边一次的圈

FindHamiltonianCycle — 求一个遍历每个顶点一次的圈

EulerianGraphQ  ▪ HamiltonianGraphQ

3 图度量法与度量

PageRank 与 HITS 是用于从搜索引擎返回的网页重要性排序的度量法.

基本度量

VertexCount — 顶点数

EdgeCount — 边数

度度量

VertexDegree — 每个顶点的边数

VertexInDegree — 每个顶点的入边数

VertexOutDegree — 每个顶点的出边数

距离度量

GraphDistance — 两个顶点间最短路径的长度

GraphDistanceMatrix  ▪ VertexEccentricity  ▪ GraphRadius  ▪ GraphDiameter

中心度度量

ClosenessCentrality — 每个顶点的紧密中心度

BetweennessCentrality — 每个顶点的中介中心性

DegreeCentrality  ▪ EigenvectorCentrality  ▪ KatzCentrality  ▪ PageRankCentrality  ▪ HITSCentrality

4 图和矩阵

很久以前就用矩阵表示图,在某些领域这仍然是唯一表示图的方法. 邻接矩阵表示相邻顶点和关联矩阵顶点-边的关联. 它们均可以完全表示无向和有向图. 矩阵表示为基于线性代数算法的图计算提供了一个桥梁.

矩阵图的构建

AdjacencyGraph — 来自于邻接矩阵的图

IncidenceGraph — 来自于关联矩阵的图

KirchhoffGraph  ▪ WeightedAdjacencyGraph

矩阵图的表示

AdjacencyMatrix — 顶点-顶点邻接矩阵

IncidenceMatrix — 顶点-边邻接矩阵

KirchhoffMatrix  ▪ WeightedAdjacencyMatrix

稀疏数组 »

SparseArray — 创建和表示一个稀疏矩阵

 

 

web.py 环境的配置以及一些basic knowledge

web.py是一个小巧灵活的基于python的web应用开发框架。相比于j2ee,效率要高很多,但是我这样的初学者来看,感觉功能上还是差前者很多。通过这篇博客简单介绍一下web.py, 并且以自己开发...
  • zs199112zs
  • zs199112zs
  • 2013年01月27日 19:12
  • 504

Linux学习笔记——1、Basic knowledge

参考鸟哥的Linux私房菜地址:http://vbird.dic.ksu.edu.tw/linux_basic/linux_basic.php 参考网中人地址:http://www.study-ar...
  • karlspace7
  • karlspace7
  • 2013年01月08日 18:08
  • 1491

如何利用knowledge base来做推荐

首先介绍一点背景信息。Dr. Gautam Shroff在《Web Intelligence and Big Data》里提到语义网(semantic web)大致的vision是:将facts和ru...
  • u013166160
  • u013166160
  • 2014年01月04日 00:47
  • 1258

Labeled Faces in the Wild 人脸识别数据集 部分测试数据

development test set Note: images displayed are original (non-aligned/funneled) images. ...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年05月23日 11:47
  • 1696

HTTP使用BASIC认证的原理及实现方法

一.   BASIC认证概述 在HTTP协议进行通信的过程中,HTTP协议定义了基本认证过程以允许HTTP服务器对WEB浏览器进行用户身份证的方法,当一个客户端向HTTP服务器进行数据请求时,如...
  • lvxinzhi
  • lvxinzhi
  • 2015年10月09日 14:46
  • 1939

【项目管理和构建】——Maven简介(一)

[+]        在现实的企业中,以低成本、高效率、高质量的完成项目,不仅仅需要技术大牛,企业更加需要管理大牛,管理者只懂技术是远远不够的。当然,管理可以说有很多的方面,例如...
  • qq_24273557
  • qq_24273557
  • 2017年04月19日 09:02
  • 289

第二章 知识图谱——机器大脑中的知识库

原文: http://book.thunlp.org/knowledge_graph/  第二章 知识图谱——机器大脑中的知识库 Published by  liuzy on ...
  • Real_Myth
  • Real_Myth
  • 2016年04月25日 09:20
  • 1244

认证模式之Basic模式

HTTP协议规范中有两种认证方式,一种是Basic认证,另外一种是Digest认证,这两种方式都属于无状态认证方式,所谓无状态即服务端都不会在会话中记录相关信息,客户端每次访问都需要将用户名和密码放置...
  • wangyangzhizhou
  • wangyangzhizhou
  • 2016年04月15日 18:09
  • 8639

Apache认证配置之一Basic认证(一)

经常上网的读者会遇到这种情况:访问一些网站的某些资源时,浏览器弹出一个对话框,要求输入用户名和密码来获取对资源的访问。...
  • yupei881027
  • yupei881027
  • 2014年05月29日 18:31
  • 1349

Basic表示一个简单的属性

5、@Basic(fetch=FetchType,optional=true)   可选   @Basic表示一个简单的属性到数据库表的字段的映射,对于没有任何标注的getXxxx()方法,默认 ...
  • u014131893
  • u014131893
  • 2014年03月25日 23:19
  • 2015
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:labeled graph---some basic knowledge
举报原因:
原因补充:

(最多只允许输入30个字)