labeled graph---some basic knowledge

转载 2012年03月21日 15:48:03

带标签属性的图

-----------一些常用的基础知识

1 图谓词与属性

许多算法和属性需要具有某种属性的图. 这些可以是基本的属性,诸如无向的,或更深的拓扑属性,诸如连通或非循环. 在某些领域,关键的问题是:如果我们替代顶点的名称,两个图是否是一样,诸如验证它们是否同构等.

基本属性

GraphQ — 验证一个表达式是否是一个图的对象

EdgeQ — 验证一个表达式是否是图的一条边

VertexQ — 验证一个表达式是否是图的一个顶点

局部结构属性

EmptyGraphQ  ▪ UndirectedGraphQ  ▪ DirectedGraphQ  ▪ LoopFreeGraphQ  ▪ SimpleGraphQ  ▪ WeightedGraphQ

全局结构属性

IsomorphicGraphQ — 验证顶点重命名后两个图是否一样

FindGraphIsomorphism — 以规则列表形式求图的同构

AcyclicGraphQ  ▪ BipartiteGraphQ  ▪ ConnectedGraphQ  ▪ EulerianGraphQ  ▪ HamiltonianGraphQ  ▪ PathGraphQ  ▪ TreeGraphQ

2 路径与圈

图的一个关键问题是导航. 尤其是找到两个顶点的最短路径,无论是找到迷宫的出口或公路网的导航. 最短路径的长度引起了自然测量的所有收集诸如图的直径. 如果不只是从一个顶点到另一个顶点的导航,您想以某种方式遍历整个图,您在寻找圈,那么欧拉与哈密尔顿圈提供了遍历图的每条边或顶点的路径.

最短路径

FindShortestPath — 求从源到目标的最短路径

ShortestPathFunction — 表示一个给出图中最短路径的函数

距离

GraphDistance — 两个顶点间最短路径的长度

GraphDistanceMatrix — 所有顶点对间的距离矩阵

最长最短路径

VertexEccentricity — 到每个其它顶点的最长最短路径

GraphRadius — 最小顶点离心率

GraphDiameter — 最大顶点离心率

GraphCenter — 具有最小离心率的顶点

GraphPeriphery — 具有最大离心率的顶点

拓扑路径

TopologicalSort — 给出为了与图拓扑相兼容的顶点

FindEulerianCycle — 求一个遍历每条边一次的圈

FindHamiltonianCycle — 求一个遍历每个顶点一次的圈

EulerianGraphQ  ▪ HamiltonianGraphQ

3 图度量法与度量

PageRank 与 HITS 是用于从搜索引擎返回的网页重要性排序的度量法.

基本度量

VertexCount — 顶点数

EdgeCount — 边数

度度量

VertexDegree — 每个顶点的边数

VertexInDegree — 每个顶点的入边数

VertexOutDegree — 每个顶点的出边数

距离度量

GraphDistance — 两个顶点间最短路径的长度

GraphDistanceMatrix  ▪ VertexEccentricity  ▪ GraphRadius  ▪ GraphDiameter

中心度度量

ClosenessCentrality — 每个顶点的紧密中心度

BetweennessCentrality — 每个顶点的中介中心性

DegreeCentrality  ▪ EigenvectorCentrality  ▪ KatzCentrality  ▪ PageRankCentrality  ▪ HITSCentrality

4 图和矩阵

很久以前就用矩阵表示图,在某些领域这仍然是唯一表示图的方法. 邻接矩阵表示相邻顶点和关联矩阵顶点-边的关联. 它们均可以完全表示无向和有向图. 矩阵表示为基于线性代数算法的图计算提供了一个桥梁.

矩阵图的构建

AdjacencyGraph — 来自于邻接矩阵的图

IncidenceGraph — 来自于关联矩阵的图

KirchhoffGraph  ▪ WeightedAdjacencyGraph

矩阵图的表示

AdjacencyMatrix — 顶点-顶点邻接矩阵

IncidenceMatrix — 顶点-边邻接矩阵

KirchhoffMatrix  ▪ WeightedAdjacencyMatrix

稀疏数组 »

SparseArray — 创建和表示一个稀疏矩阵

 

 

相关文章推荐

google knowledge graph

Back in May 2012 Google announced the launch of the Knowledge Graph, a brand new mechanism to help...

Introducing the Knowledge Graph: things, not strings【阅读翻译】

ntroducing the Knowledge Graph: things, not strings【阅读翻译】

JQuery学习笔记(一):basic knowledge

使用 CSS 选择器来访问和操作网页上的HTML 元素(DOM 对象) jQuery 同时提供 companionUI(用户界面)和插件   1.引用 jQuery Baidu CDN...

C++0X Basic Knowledge

C++0x增加了诸多的feature,使C++俨然变成了新的语言,遂拙记一些。 Moving semantics C++ has supported copying object,but it...

SLAM--basic knowledge 1

Extrinsic Camera Calibrationcomposed of 2 transformations: from some world coordinate system to the...

basic knowledge in python (1)

1. 可以在while循环中使用一个else从句 #!/usr/bin/python # Filename: while.py number = 23 running = True whil...

了解Google发展的下一代搜索Knowledge Graph:Emily Moxley访谈录

凡走过必留下脚印,真正伟大的人物不必声嘶力竭去卖弄自己,丰碑、传纪、歌曲也会自动诞生。当然,历史上的一些奇葩除外。同理,伟大的产品,也是深厚积淀的成果,个人、文化、时代无一不可以是促成因素。Googl...

Learning Entity and Relation Embeddings for Knowledge Graph Completion (TransR)论文翻译

整理转自:fffnull 的 CSDN 博客,感谢他的翻译分享 论文原文地址:Learning Entity and Relation Embeddings for Knowledge Graph ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)