关闭

labeled graph---some basic knowledge

180人阅读 评论(0) 收藏 举报

带标签属性的图

-----------一些常用的基础知识

1 图谓词与属性

许多算法和属性需要具有某种属性的图. 这些可以是基本的属性,诸如无向的,或更深的拓扑属性,诸如连通或非循环. 在某些领域,关键的问题是:如果我们替代顶点的名称,两个图是否是一样,诸如验证它们是否同构等.

基本属性

GraphQ — 验证一个表达式是否是一个图的对象

EdgeQ — 验证一个表达式是否是图的一条边

VertexQ — 验证一个表达式是否是图的一个顶点

局部结构属性

EmptyGraphQ  ▪ UndirectedGraphQ  ▪ DirectedGraphQ  ▪ LoopFreeGraphQ  ▪ SimpleGraphQ  ▪ WeightedGraphQ

全局结构属性

IsomorphicGraphQ — 验证顶点重命名后两个图是否一样

FindGraphIsomorphism — 以规则列表形式求图的同构

AcyclicGraphQ  ▪ BipartiteGraphQ  ▪ ConnectedGraphQ  ▪ EulerianGraphQ  ▪ HamiltonianGraphQ  ▪ PathGraphQ  ▪ TreeGraphQ

2 路径与圈

图的一个关键问题是导航. 尤其是找到两个顶点的最短路径,无论是找到迷宫的出口或公路网的导航. 最短路径的长度引起了自然测量的所有收集诸如图的直径. 如果不只是从一个顶点到另一个顶点的导航,您想以某种方式遍历整个图,您在寻找圈,那么欧拉与哈密尔顿圈提供了遍历图的每条边或顶点的路径.

最短路径

FindShortestPath — 求从源到目标的最短路径

ShortestPathFunction — 表示一个给出图中最短路径的函数

距离

GraphDistance — 两个顶点间最短路径的长度

GraphDistanceMatrix — 所有顶点对间的距离矩阵

最长最短路径

VertexEccentricity — 到每个其它顶点的最长最短路径

GraphRadius — 最小顶点离心率

GraphDiameter — 最大顶点离心率

GraphCenter — 具有最小离心率的顶点

GraphPeriphery — 具有最大离心率的顶点

拓扑路径

TopologicalSort — 给出为了与图拓扑相兼容的顶点

FindEulerianCycle — 求一个遍历每条边一次的圈

FindHamiltonianCycle — 求一个遍历每个顶点一次的圈

EulerianGraphQ  ▪ HamiltonianGraphQ

3 图度量法与度量

PageRank 与 HITS 是用于从搜索引擎返回的网页重要性排序的度量法.

基本度量

VertexCount — 顶点数

EdgeCount — 边数

度度量

VertexDegree — 每个顶点的边数

VertexInDegree — 每个顶点的入边数

VertexOutDegree — 每个顶点的出边数

距离度量

GraphDistance — 两个顶点间最短路径的长度

GraphDistanceMatrix  ▪ VertexEccentricity  ▪ GraphRadius  ▪ GraphDiameter

中心度度量

ClosenessCentrality — 每个顶点的紧密中心度

BetweennessCentrality — 每个顶点的中介中心性

DegreeCentrality  ▪ EigenvectorCentrality  ▪ KatzCentrality  ▪ PageRankCentrality  ▪ HITSCentrality

4 图和矩阵

很久以前就用矩阵表示图,在某些领域这仍然是唯一表示图的方法. 邻接矩阵表示相邻顶点和关联矩阵顶点-边的关联. 它们均可以完全表示无向和有向图. 矩阵表示为基于线性代数算法的图计算提供了一个桥梁.

矩阵图的构建

AdjacencyGraph — 来自于邻接矩阵的图

IncidenceGraph — 来自于关联矩阵的图

KirchhoffGraph  ▪ WeightedAdjacencyGraph

矩阵图的表示

AdjacencyMatrix — 顶点-顶点邻接矩阵

IncidenceMatrix — 顶点-边邻接矩阵

KirchhoffMatrix  ▪ WeightedAdjacencyMatrix

稀疏数组 »

SparseArray — 创建和表示一个稀疏矩阵

 

 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:7225次
    • 积分:138
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档