关闭

天池大数据竞赛----IJCAI SocInf'16 Contest-Brick-and-Mortar Store Recommendation

1266人阅读 评论(2) 收藏 举报
分类:

标题少写了 with Budget Constraints

妈蛋最后几天跌出前100了


赛制介绍

Brick-and-Mortar Store Recommendation with Budget Constraints
IJCAI (http://ijcai-16.org/) is a leading international conference in AI area, and often organizes various activities to promote AI innovations, e.g. hosting a sequence of competitions. In this year, Alibaba Group and Ant Financial Service Group will hold a data mining competition oflocation base services, in cooperation with IJCAI workshop SocInf 2016 (http://socinf2016.isistan.unicen.edu.ar/). Winners will be invited to present their solutions at the workshop in New York City with travelling support.

Background
As mobile devices become ubiquitous in our daily life, location based services (LBS) have become increasingly more important. People are getting more comfortable sharing their real-time locations with various location-based services, such as navigation, car ride hailing, restaurant/hotel booking, etc. As a result, huge amount of user data has been accumulated, which ignites the excitement from the machine learning/data mining community to join in force revealing the magic in the Pandora’s box of our daily life, where the high dimension time-space complexity needs to be explored.
In this contest, we will focus on nearby store recommendation when users enter new areas they rarely visited in the past. The contest has two novelties:
First, you are supposed to investigate whether the correlation between online and on-site preference helps in recommending nearby stores.Alibaba Group owns Taobao.com and Tmall.com, the largest online retail platforms in China, serves for more than 10 million merchants and over 300 million customers. Meanwhile, the Ant financial’s Alipay offers restaurant and retail store recommendation and payment services, named Koubei, for a number of customers. A user enjoying services provided by these two groups often has a unified online account. While Taobao and Tmall have run for many years and accumulate vast consumers’ behavior data, the nearby recommendation/payment services provided by Alipay are relatively new thus with less data.
Second, a set of budget constraints is imposed on the recommender system, for example, due to service capacity or number of coupons available at the stores.
As far as we know, such contest setting is novel to the research community, though it is critically important to the blooming location based business

赛题与数据

文件名称

文件格式

How to use extra data.pdf

.pdf (567KB) 

ODPS User Manual.zip

.zip (3MB) 

Tianchi User Manual.pdf

.pdf (2MB) 

submission.csv

.csv (5KB) 

data sets

download 

data sets (mirror link, code: CVVz9P)

download 

In this contest, we aim to predict users' preference on Dec., 2015 (Table 4) based on his/her online/on-site behavior between July 1 st , 2015 and Nov. 30 th , 2015 (Table 1, 2). Moreover, budget constraints are imposed on each merchant (Table 3), simulating the limited discount/coupons available.

Data 
This task involves following data accumulated on Tmall.com/Taobao.com and the app Alipay.

Remark 1: Due to both business and noise concerns, we remove data in the great promotion period. That is, Nov. 01-Nov. 20 in Table 1 and Dec.12 in Table 4. 
Remark 2: Data are biased sampled from the daily log, thus its distribution would be different from the distribution of our entire business. Nevertheless, we believe it won’t affect too much on users’ preference prediction. 
Remark 3: The `budget’ constraints in Table 3 denotes the number of coupons the merchant offers in December, which is estimated by domain knowledge. See the ``evaluation metric’’ for more detail. 
Remark 4: To prevent overfitting, predicted results associated to half of the merchant set are evaluated at this stage, while the full set will be used after May 24. That is, some merchants are directly removed from both your recommendation list and the truth without evaluation before updating.

全英文,真TM酸爽。简单来说这赛题就是让我们根据用户的线上线下行为预测该用户会在哪些地点买哪些东西。

表一和表二的关系官方回答如下:

 What’s the relationship between users in Table 1 and 2? 
A: As mention in the contest introduction, there is a huge amount of overlapping users between alipay and Taobao/Tmall. An identical user ID from Table 1 and 2 refers to a unique user, which means you may utilize users’ online behavior/relationship to improve your prediction accuracy.

思路之前的博客说过,在这就不重复了。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:280461次
    • 积分:3606
    • 等级:
    • 排名:第9074名
    • 原创:102篇
    • 转载:40篇
    • 译文:0篇
    • 评论:103条
    文章分类
    最新评论