Codeforces 311(div 2):E. Ann and Half-Palindrome

原创 2015年07月08日 13:12:00

题目描述:

          给定半回文子串的定义,现给你一个串S和一个整数K,输出S所有子串中且是半回文排名第K的子串,半回文子串按照字典序升序顺序。(len(S) <= 5000)


分析:

             首先,定义dp[i][j]表示S[i....j]是否为半回文子串,可以在的时间内求出所有的状态。现在,需要计算排名第K的半回文子串,我们可以通过将所有的半回文子串插入到一颗字典树中,然后通过先序遍历,找到第K大值,然而,这样做的最坏情况下时间复杂度为,很显然不可取。我们可以通过利用字符串的公共前缀来优化插入到字典树所消耗的时间,对于串中每一个位置i,以i开头,且是半回文的子串,存在相同的公共前缀,我们只用找到以i开头,最长的半回文子串,然后将其插入到字典树中,在插入过程中,需要判断i到当前点是否为一个半回文子串,并作计数。最后对整颗字典树进行先序遍历,就能找到第K大值,时间复杂度、空间复杂度为
#include<bits\stdc++.h>
#define MAX_ASCII 2
using namespace std;
const int N = 5e+3 + 7;
bool dp[N][N];
char str[N];
int dict[N * N][MAX_ASCII + 1], cnt = 1;
//字典树插入
void Insert(const char *s, int L, int R)
{
    int v = 0, i = L;
    while (L <= R)
    {
        if (dict[v][s[L] - 'a'])
            v = dict[v][s[L++] - 'a'];
        else
            v = dict[v][s[L++] - 'a'] = cnt++;
        if (dp[i][L - 1])
            ++dict[v][2];
    }
}
//先序遍历查询第K大值
bool Rank(int v, vector<char> &path, int &k)
{
    k -= dict[v][2];
    if (k <= 0)
    {
        for (auto x : path)
            cout << x;
        cout << endl;
        return true;
    }
    for (int i = 0; i < 2; ++i)
    {
        if (dict[v][i])
        {
            path.push_back((char)(i + 'a'));
            if (Rank(dict[v][i], path, k))
                return true;
            path.pop_back();
        }
    }
    return false;
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(NULL);
    int k, len;
    cin >> str >> k;
    len = strlen(str);
    for (int i = len - 1; i >= 0; --i)
        for (int j = len - 1; j >= i; --j)
            dp[i][j] = i <= j - 4 ? (str[i] == str[j] && dp[i + 2][j - 2]) : str[i] == str[j];
    for (int i = 0; i < len; ++i)
    {
        int j = len - 1;
        for (; j >= i && !dp[i][j]; --j);
        Insert(str, i, j);
    }
    vector<char> path;
    Rank(0, path, k);
    return 0;
}


codeforces #311 557E E. Ann and Half-Palindrome(trie+dp+dfs)

题目链接: 点击打开链接 题目大意: 给出一个字符串,问这个字符串的是半回文的子串的第k个是什么,半回文就是前一半的奇数位满足回文串的条件 题目分析: 这道题要求输出字典序第k大,那么自然而...
  • qq_24451605
  • qq_24451605
  • 2015年07月02日 22:53
  • 565

Codeforces Round #311 (Div. 2) E. Ann and Half-Palindrome (DP+字典树)

题目地址:传送门 先用dp求出所有的符合要求的半回文串,标记出来。然后构造字典树。然后再dfs一遍求出所有节点的子树和,最后搜一遍就能找出第k个来了。 代码如下:#include #includ...
  • u013013910
  • u013013910
  • 2015年07月02日 21:39
  • 778

Codeforces Round #311 (Div. 2) E. Ann and Half-Palindrome 字典树

E. Ann and Half-Palindrome time limit per test1.5 seconds memory limit per test512 megabytes inpu...
  • u010422038
  • u010422038
  • 2015年07月12日 00:48
  • 959

cf #311 E. Ann and Half-Palindrome (dp+字典树)

题目:http://codeforces.com/contest/557/problem/E 题意:定义半回文串:字符串前面一半的奇数位上的字符和后一边对应位置上的字符相同的字符串。给定长度|s| 分...
  • w20810
  • w20810
  • 2015年12月06日 13:15
  • 230

Codeforces Round #311 (Div. 2) E - Ann and Half-Palindrome(字典树+dp)

E. Ann and Half-Palindrome time limit per test 1.5 seconds memory limit per test 512 meg...
  • kalilili
  • kalilili
  • 2015年07月08日 13:18
  • 891

Codeforces Round #456 (Div. 2): E. Prime Gift(折半枚举)

题意: 给你一个长度为n的集合,如果一个数满足它所有的质因子都在这个集合中,那么这个数就是合法的 求第k小的合法数(1 思路: 将n个数对半拆成两个集合,每个集合元素不会超过8个,对于...
  • Jaihk662
  • Jaihk662
  • 2018年01月06日 15:03
  • 241

codeforces 557 E Ann and Half-Palindrome

题意是要求出一个串的第k大的半回文子串 半回文串的定义是:若一个串其实位置为1,那么当所有奇数位i,且i 那么这个串就是半回文串。 作法就是,把这个串的所有半回文子串建成一个字典...
  • chaoweilanmao
  • chaoweilanmao
  • 2015年07月19日 08:42
  • 652

Codeforces Round #460 (Div. 2): E. Congruence Equation(枚举)

题意:给出a, b, p, x,求有多少个n满足①n*a^n%p==b;②n 思路:先要知道一个很简单的性质:a^n%p的值一定存在循环节(n=0就进入循环),且周期T一定是p-1的约数 然后就好...
  • Jaihk662
  • Jaihk662
  • 2018年02月01日 15:22
  • 129

[字典树] Codeforces 557E Ann and Half-Palindrome

题意: 给一个长度为5000的ab串,问你第k大的半回文子串是什么 所谓的半回文串就是下标是奇数的位置前后相等就好了。 思路: 首先发现串的长度只有5000,可以做一个类似区间dp的预处理 ...
  • wdcjdtc
  • wdcjdtc
  • 2015年08月05日 13:25
  • 494

Codeforces 557E Ann and Half-Palindrome (Trie树)

题目大意: 就是现在给出长度不超过5000的只包含小写字母'a'和‘b'的字符串 定义半回文串:字符串S是半回文串的条件是S[i] = S[|S| - i + 1] 对所有的计数 i, i 然...
  • u013738743
  • u013738743
  • 2015年10月01日 21:49
  • 319
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Codeforces 311(div 2):E. Ann and Half-Palindrome
举报原因:
原因补充:

(最多只允许输入30个字)