关闭

POJ 3420 Quad Tiling (瓷砖问题+矩阵快速幂)

标签: dfs
298人阅读 评论(0) 收藏 举报
分类:

题意

用1*2的瓷砖拼成4*n的矩形,求方案数。(n <= 1e9)

思路

瓷砖问题还是比较套路的,在数据比较小的时候可以直接把每一行状态压缩一下,然后dfs求出方案。
在这样数据比较大的时候我们使用pre和now构造出矩阵,然后用快速幂优化递推n次就可以了。
实际上还有直接手动递推公式的方法,不过需要推导推导的方法可以看这里

代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define LL long long
#define lowbit(x) ((x)&(-x))
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1|1
#define MP(a, b) make_pair(a, b)
const int INF = 0x3f3f3f3f;
const int maxn = 10000 + 7;
const double eps = 1e-8;
const int MOD = 1000000009;
const double PI = acos(-1.0);
int n, mod;
const int d = 16;

struct Matrix
{
    LL a[100][100];
    Matrix()
    {
        memset(a, 0, sizeof(a));
    }
    void init()
    {
        for (int i = 0; i < d; i++) a[i][i] = 1;
    }
    Matrix operator * (const Matrix &B)const
    {
        Matrix C;
        for(int i = 0; i < d; i++)
            for(int j = 0; j < d; j++)
                for(int k = 0; k < d; k++)
                    C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % mod;
        return C;
    }
    Matrix operator ^ (const int &t)const
    {
        Matrix res, A = (*this);
        res.init();
        int p = t;
        while (p)
        {
            if (p & 1) res = res * A;
            A = A * A;
            p >>= 1;
        }
        return res;
    }
    void print()
    {
        for (int i = 0; i < d; i++)
        {
            for (int j = 0; j < d; j++)
                printf("%-3d", a[i][j]);
            printf("\n");
        }
    }
}mat;

void dfs(int step, int now, int pre)
{
    if (step > 4) return ;
    if (step == 4)
    {
        mat.a[pre][now]++;
        return ;
    }
    dfs(step + 2, (now << 2) | 3, (pre << 2) | 3);
    dfs(step + 1, (now << 1) | 1, pre << 1);
    dfs(step + 1, now << 1, (pre << 1) | 1);
}

int main()
{
    dfs(0, 0, 0);
    while (scanf("%d%d", &n, &mod) && n)
    {
        Matrix res = mat ^ n;
        printf("%lld\n", res.a[15][15]);
    }
    return 0;
}
0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

POJ 3420 Quad Tiling 线性递推 矩阵快速幂

题意:给出一个4 * N的方格。用1 * 2的格子去填充,问有方案数。 思路:以前做过填充格子的轮廓线DP。但是因为N           但是注意到所有格子都是可以放1*2的格子的,而...
  • u012139398
  • u012139398
  • 2015-01-26 17:01
  • 618

POJ 3420 Quad Tiling DP?递推?+矩阵快速幂

DP+矩阵快速幂
  • neighthorn
  • neighthorn
  • 2016-07-18 21:54
  • 267

【POJ 3420】Quad Tiling(dp|递推 +矩阵快速幂)

秋意渐浓,阳光西斜,遍地金黄
  • reverie_mjp
  • reverie_mjp
  • 2016-10-27 20:47
  • 150

Quad Tiling POJ - 3420 (矩阵快速幂)题解

Quad Tiling POJ - 3420 (矩阵快速幂)题解
  • hsj970319
  • hsj970319
  • 2017-03-21 22:42
  • 103

POJ3420 Quad Tiling(模板+矩阵快速幂)

Quad Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4107...
  • dreamzuora
  • dreamzuora
  • 2016-10-06 14:40
  • 243

poj 3420 Quad Tiling(状态压缩矩阵递推)

poj 3420 Quad Tiling
  • fallenfall
  • fallenfall
  • 2014-04-22 08:09
  • 414

【Poj3420】Quad Tiling 状压DP 矩阵快速幂

北京的夜晚是如此的无聊QAQ。。。把这段时间主教练找的模拟赛的题都回忆一下(虽然我做的都只有水题QAQ比如这一道)。。。 经典的状压动归,我记得当年还有一道升级版的k=12345更爽。。。 主要思路就...
  • qq_34637390
  • qq_34637390
  • 2016-06-03 21:07
  • 137

POj 3420 Quad Tiling 状态压缩DP+递推+矩阵快速幂

哈哈,写了好久的,总算对了。 先介绍一种   递推+矩阵的快速幂的方法   一种DP的思想考虑4×n的最后一列  ,可以放的方法一共有5种    1.放4个 1×2  则 为dp[n-2]   2....
  • cnh294141800
  • cnh294141800
  • 2013-10-17 15:49
  • 1085

POJ 3420 Quad Tiling(状压DP 用矩阵快速幂优化)

如果数据量不那么大那么这题就是一个裸的状压DP。
  • u012962816
  • u012962816
  • 2014-10-29 20:20
  • 598

POJ3420Quad Tiling(矩阵快速幂)

Quad TilingTime Limit: 1000MS Memory Limit: 65536K Total Submissions: 3740 Accepted: 1684 ...
  • huayunhualuo
  • huayunhualuo
  • 2015-12-29 18:50
  • 858
    个人资料
    • 访问:50637次
    • 积分:1025
    • 等级:
    • 排名:千里之外
    • 原创:78篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1条