关闭

HDOJ 5411 CRB and Puzzle (矩阵快速幂)

标签: poj
270人阅读 评论(0) 收藏 举报
分类:

题意

给出一个邻接矩阵,求走k步以内所有的路径数量。

思路

离散数学里面学的嘛,可达矩阵的k次方就是走k步时的可达矩阵,然后就转化成计算A+A2...Am
然后想到了POJ的那个经典题目,通过对m二分来求,然后疯狂TLE= =(一个log都不能多吗。。。
最后想到了以前做的某个AC自动机的题也是求这个,给原矩阵加一维然后求幂之后直接对那一维相加就可以了。

代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define LL long long
#define Lowbit(x) ((x)&(-x))
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1|1
#define MP(a, b) make_pair(a, b)
const int INF = 0x3f3f3f3f;
const int MOD = 1000000007;
const int maxn = 1e3 + 10;
const double eps = 1e-8;
const double PI = acos(-1.0);
typedef pair<int, int> pii;

int n, m;
int d;

struct Matrix
{
    LL a[100][100];
    Matrix()
    {
        memset(a, 0, sizeof(a));
    }
    inline void init()
    {
        for (int i = 0; i < d; i++) a[i][i] = 1;
    }
    inline Matrix operator + (const Matrix &B)const
    {
        Matrix C;
        for (int i = 0; i < d; i++)
            for (int j = 0; j < d; j++)
                C.a[i][j] = (a[i][j] + B.a[i][j]) % 2015;
        return C;
    }
    inline Matrix operator * (const Matrix &B)const
    {
        Matrix C;
        for(int i = 0; i < d; i++)
            for(int j = 0; j < d; j++)
                for(int k = 0; k < d; k++)
                    C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % 2015;
        return C;
    }
    inline Matrix operator ^ (const int &t)const
    {
        Matrix res, A = (*this);
        res.init();
        int p = t;
        while (p)
        {
            if (p & 1) res = res * A;
            A = A * A;
            p >>= 1;
        }
        return res;
    }
    void print()
    {
        for (int i = 0; i < d; i++)
        {
            for (int j = 0; j < d; j++)
                printf("%d%c", a[i][j], (j == d - 1) ? '\n' : ' ');
        }
    }
};

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int T;
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d%d", &n, &m);
        Matrix mat;
        d = n + 2;
        for (int i = 1; i <= n; i++)
        {
            int k, u;
            scanf("%d", &k);
            while (k--)
            {
                scanf("%d", &u);
                mat.a[i][u] = 1;
            }
        }
        for (int i = 0; i <= n; i++)
            mat.a[0][i] = 1;
        mat = mat ^ m;
        int num = 0;
        for (int i = 0; i <= n; i++)
            num = (num + mat.a[0][i]) % 2015;
        printf("%d\n", num);
    }
    return 0;
}
0
0
查看评论

HDOJ 5411 CRB and Puzzle 矩阵快速幂

直接构造矩阵,最上面一行加一排1.快速幂计算矩阵的m次方,统计第一行的和 CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (J...
  • u012797220
  • u012797220
  • 2015-08-20 23:41
  • 474

hdu 5411 CRB and Puzzle【矩阵快速幂】

CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 1013&#...
  • mengxiang000000
  • mengxiang000000
  • 2016-06-18 17:25
  • 205

hdu 5411 CRB and Puzzle(矩阵快速幂)

题意: 给一个有向图,从任意点开始,最多走m步,求形成的图案总数。 思路: 令dp[i][j]dp[i][j]表示:走jj步最后到达i的方法数, 则dp[i][j]=∑dp[k][j−1]dp[i][j]=\sum{dp[k][j-1]},其中k表示:走jj步可以直接到达ii的点。 ...
  • HelloWorld10086
  • HelloWorld10086
  • 2015-08-21 19:44
  • 391

hdu 5411 CRB and Puzzle 矩阵快速幂

链接 题解链接:http://www.cygmasot.com/index.php/2015/08/20/hdu_5411/ 给定n个点 常数m 下面n行第i行第一个数字表示i点的出边数,后面给出这些出边。 问:图里存在多少条路径使得路径长度 思路: 首先能得到一个m*n*n的dp,dp...
  • qq574857122
  • qq574857122
  • 2015-08-20 20:32
  • 906

矩阵快速幂(CRB and Puzzle,HDU 5411)

如果A是邻接矩阵,且i与j之间有A[i][j]条直接相连的道路。 那么A^k就是k长路矩阵,i与j之间有A^k[i][j]条k长的路。 题目要求小于等于M的道路的个数,对2015取模。 即∑∑∑A^k[i][j]%2015 1 考虑计算出一个矩阵B[k],其中i与j之间有B[k][i][j]条小...
  • xl2015190026
  • xl2015190026
  • 2017-07-22 18:10
  • 80

HDU 5411 CRB and puzzle (Dp + 矩阵快速幂)

CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 483...
  • u013967323
  • u013967323
  • 2015-08-24 18:26
  • 485

HDU 5411 CRB and Puzzle(矩阵快速幂+可达矩阵)

HDU 5411题意:Count the number of different patterns by counting the number of different paths of length at most m-1.思路:其实这类问题就是求: S=I+A+A2+...+AmS=I+A+...
  • qq_15714857
  • qq_15714857
  • 2015-08-22 00:51
  • 1268

【矩阵快速幂】 HDU 5411 CRB and Puzzle 等比

点击打开链接 题意显然是 求 A+A^2+A^3+....+A^m 这就是经典题目 矩阵乘法十种经典题目  递归解决 后半部分提取 A^(m/2) 该题再特判下 m==1的时候 #include using namespace std; typedef long l...
  • u012749539
  • u012749539
  • 2015-08-21 10:53
  • 340

hdu 5411 CRB and Puzzle

Sample Input 1 3 2 1 2 1 3 0 Sample Output 6 Hintpossible patterns are ∅, 1, 2, 3, 1→2, 2→3 解释样例: 第一行是t,有t组样例。 接下来n和m,n代表有n个点,然后m是满足点的个数小于等于的...
  • kingsirre
  • kingsirre
  • 2015-08-27 09:10
  • 169

HDU 5411 CRB and Puzzle

Problem Description CRB is now playing Jigsaw Puzzle. There are N kinds of pieces with infinite supply. He can assemble one piece to ...
  • jtjy568805874
  • jtjy568805874
  • 2015-08-20 17:16
  • 483
    个人资料
    • 访问:52714次
    • 积分:1047
    • 等级:
    • 排名:千里之外
    • 原创:78篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1条