关闭

poj 2506

标签: poj
142人阅读 评论(0) 收藏 举报
分类:

Problem:Tiling

Description:题目意思很简单,给你一个2 * n的 长方形,让你用2 * 1的长方形和2 * 2的正方形去填,问有多少种方式可以正好填满。

Solution:首先分析可以知道n=1时,有一种方式可以填满;当n=2时,有3种方式;然后分析n=4时,如果最后一个格子用 2 * 1来填充的话,剩下的则可以看成是一个n=3的问题,如果最后一个用2 * 2来填充的话,有两种填充方式,一种是用两个2 * 1的横着来填充(不能竖着填充),另一种是用一个2 * 2的来填充,那么问题就可以看成是一个n=2的问题,所以n=4时有5种方式。推广到n可以得到一个递归方程f(n)=f(n-1)+2 * f(n-2);用递归的方法要注意记忆化搜索,不然会超时;用递推的话就不用考虑这个。

Code(C++)(递归实现):

#include <iostream>
#include <cstring>
using namespace std;

int dp[255][1000];

int used[255];


void f(int x,int ans[])
{
    if(used[x]){
        for(int i=0;i<1000;i++)
            ans[i]=dp[x][i];
        return ;
    }

    used[x]=1;

    int a[1000],b[1000],c[1000];
    int i,r=0;
    for(int i=0;i<1000;i++)
    {
        a[i]=0;
        b[i]=0;
        c[i]=0;
    }
    if(x==0||x==1)
        c[0]=1;
    else if(x==2)
        c[0]=3;
    else
    {
        f(x-1,a);
        f(x-2,b);
        for(i=0;i<1000;i++)
        {
            c[i]=b[i]+b[i]+a[i]+r;
            r=0;
            if(c[i]>=10)
            r=c[i]/10;
            c[i]=c[i]%10;
        }
    }
    for(i=0;i<1000;i++)
        dp[x][i]=c[i];
}

void init()
{
    int ans[1000];
    for(int i=0;i<251;i++)
        f(i,ans);
}

int main()
{
    init();
    int n,i;
    int ans[1000];
    while(cin>>n)
    {

        for(i=999;i>=0&&dp[n][i]==0;i--);
        for(;i>=0;i--)
                cout<<dp[n][i];
        cout<<endl;
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:5567次
    • 积分:421
    • 等级:
    • 排名:千里之外
    • 原创:37篇
    • 转载:2篇
    • 译文:0篇
    • 评论:4条
    文章分类
    阅读排行
    最新评论