关闭

PAT (甲)1004 Counting Leaves (30)(dfs)

PAT...
阅读(96) 评论(0)

Introduction to Optimization(四): 拟牛顿法

本节介绍: hessian matrix 近似 DFP算法 bfgs算法 hessian matrix 近似牛顿法的基本思路是用二次函数来局部逼近目标函数 ff 并解近似函数的极小点作为下一个迭代点,迭代公式 但是牛顿法的缺陷是需要...
阅读(3) 评论(0)

codeforces 871C. Points, Lines and Ready-made Titles (与图相关的计数)

题目链接C. Points, Lines and Ready-made Titles分析 可以发现如果将相邻两个点(X,或者Y坐标相同)用一条边连起来,建一个无向图,那麽就可以单独考虑连通分量了,而一个连通分量中可以发现如果没有环,那麽答案是  2X+Y−1 X:=连通图里不同的X坐标 Y:=同上  2^{X+Y}-1\\  X:=连通图里不同的X坐标  Y:=同上    如果有环  2X+Y...
阅读(21) 评论(0)

Introduction to Optimization(三): 共轭梯度算法

基本概念 共轭: QQ 是一个对称实矩阵,对于方向向量 d1,d2,…dm,∀i≠j,dTiQdj=0d_1,d_2,\dots d_m,\forall i\neq j,d_i^TQd_j =0 则他们关于QQ 共轭 Q正定 如果对于矩阵Q,Q>0Q,Q>0,若一组向量d1,d2,…dm,m≤n−1d_1,d_2,\dots d_m,m\le n-1,关于QQ 共轭,则他们线性无关。(直接用定义...
阅读(18) 评论(0)

HDU 5534 Partial Tree(dp 背包)

题目链接Partial Tree分析 总共 2(n−2)2(n-2) 度, 度数为 i 价值是f[i], 先给每个点一度,那麽剩余 n-2 个点分配就好,这不就是背包吗 但是很奇怪的是,我用滚动数组倒着dp的时候wa了????为什么???AC code#include #define pb push_back #define mp make_pair #define P...
阅读(22) 评论(0)

Introduction to Optimization(二):基于梯度的优化

这篇文章主要讲: 梯度下降 梯度最速降 梯度下降相信这个对于大部分人来说并不陌生,听过吴恩达公开课的都知道(escape….) 我们知道梯度方向是函数下降最快的方向(书上有证明).梯度下降就是沿着梯度负方向构造一个点: xx−αxx\pmb x-\alpha \pmb x (粗体表示列向量),将其泰勒展开我们有 f(xx−αxx)=f(xx)−α||∇f(xx)||2+o(α) f(\pmb x...
阅读(29) 评论(0)

Introduction to Optimization(一):一维最优化方法

最近经常用到scipy.optimize 想来一直把它当成黑箱实在是不舒服,所以还是决定去了解一下其中的算法,幸来看见《an Introduction to Optimization》这本书里讲了很多优化方法。便于让自己燕过流痕故这里做个笔记.仅用于个人回顾.这里是正文……..第7章: 一维搜索方法. 这里主要说一下这个 黄金分割方法 原来这就是以前听ACM大佬说的3分.算法描述对于函数: f(x...
阅读(40) 评论(0)

2016 四川省赛F. Floyd-Warshall(LCA + brute force)

这是我第一次使用输入输出外挂,没错,第一次…….. 被卡成傻逼了.题目链接Floyd-Warshall分析题解icpc_camp 上面已经写的很清楚了. https://post.icpc-camp.org/d/576-2016-hints  只需要将至多200个链接非树边的点离散出来,然后在对这两百个点做bfs找出以他们为起点的单元最短路就好了. 不过用并查集来找非树边会T成撒比,找了几份网...
阅读(30) 评论(0)

2016 四川省赛 H AroundtheWorld(BEST定理)

题目链接BEST 定理分析是时候好好学一波BEST定理了,这东西就是拿来专门统计有向图的欧拉回路计数的 BEST定理 和这里不加证明的给出BEST定理,有向图G,di=d−i=d+iG,d_i = d_i^-=d_i^+的欧拉回路数目为 Tv∗∏i∈V(G)(di−1)! T_v*\prod_{i\in V(G)}(d_i-1)! i其中TvT_v 为任意顶点vv 的 in_tree 或者...
阅读(38) 评论(0)

2016 JAG E Similarity of Subtrees(hash)

迷一样的hash.....题目链接2016 JAG E Similarity of Subtrees分析啊这位大佬的图非常到位hash函数的定义方式是将深度为 dd 的顶点给一个权重pdp^d, 取 pp 为素数就好AC code#include #define pb push_back #define mp make_pair #define PI acos(-1)...
阅读(29) 评论(0)

HDU 5925 Coconuts(二维离散化权值统计 经典)

题目链接这是2016 ccpc 东北的银牌题,很经典. Coconuts分析直接二维离散化,然后记录下各压缩了多少行和列,将其权值相乘便是离散化的图里的权重. dfs or bfs 统计一下就行了.//Problem : 5925 ( Coconuts ) Judge Status : Accepted //RunId : 22331126 Language : G++ Aut...
阅读(32) 评论(0)

python 字符串与二进制串之间的转化

最近学习密码学,经常要在二进制位上操作,加完密以后又要把二进制串转化回去,还要中英文兼顾,就只好用’utf-8’了,’utf-8’转化为二进制串是很容易的事情,但是二进制串转回去就有点麻烦了,因为解码好像只能是bytes对象,不能是字符串,这里记录一个简单的方法bitarrayfrom bitarray import bitarray bitarray对象可以轻松将二进制串转化为bitarray对象...
阅读(58) 评论(0)

HDU 5528 Count a * b 2015 长春现场赛(积性函数)

题目链接Count a * b分析这是很有意思的积性函数问题反过来定义 h(m)=m2−f(m)=∑a,b[a∗b%m=0]=∑a=1,bmgcd(a,m)|b=∑a=1mgcd(a,m)=∑d|md∗ϕ(m/d) \begin{align} h(m) &= m^2 - f(m)\\ &=\sum_{a,b}[a*b\%m=0]\\ &=\sum_{a=1,b}^m gcd(a,m)|b\\ &=...
阅读(45) 评论(0)

HDU 5517 2015沈阳现场赛(二维树状数组)

题目链接Triple题目分析首先分析集合C中的不同点不会超过10510^5个,因为每个ee 只会对应唯一的一个aa,因为我们只需要对每个bb存一个最大的a就行. 然后将CC中的点集排序,重大到小排序,重大到小遍历,用二维树状数组判断 ≥(c,d)\ge (c,d) 的点的个数,若多于1个则说明这个点不符合情况,否则符合条件,因为在二维树状数组中的点的a都比当前点大,所以一次少过去就好.注意计算重点...
阅读(32) 评论(0)

2017北京网络赛hihocoder 1580 matrix(dp)

题目链接1580 : Matrix分析和最大子矩阵和类似,扩展一维就好了. 详细分析请见这位老歌写的blog 注意特判Ac code#include #define pb push_back #define mp make_pair #define PI acos(-1) #define fi first #define se second #define INF...
阅读(83) 评论(0)
199条 共14页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:44100次
    • 积分:2369
    • 等级:
    • 排名:第16587名
    • 原创:199篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条