所有节点对之间的最短路问题(All Pair Shortest Path)--《算法导论》

原创 2016年08月28日 23:52:05

给定一个有向图求出里面所有节点对之间的最短路径。
问题的详细描述见Wikipedia:https://en.wikipedia.org/wiki/Shortest_path_problem
介绍两个算法O(V3)的Floyd算法和O(V2lgV+VE)的Jhonson算法。分别应对稠密图和稀疏图的情况。

Floyd

这是一个动态规划算法。设dkiji,j之间所有中间节点全部取自<1,2,...,i,...,k>的一条最短路的权重。则状态转移方程如下

dkij={wijmin{dk1ij,dk1ik+dk1ij}x=0x!=0

伪代码

for  k=1 to |V|
       for i=1 to V
              for j=1 to V
                     d[i][j]=min{d[i][j],d[i][k]+d[k][j]}

c++代码

void floyd(int n)
{
    memcpy(d,w,sizeof(w));//初始化d(0)
    for(int k=1 ; k<=n ; ++k)
        for(int i= 1 ; i<=n ; ++i)
            for(int j=1 ; j<=n ; ++j)
                d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}

Johnson(用于稀疏图)

Johnson算法的核心思想是直接对每个顶点做一次Dijkstra,这样时间复杂度只有O(VElgV)(用斐波那契堆实现只需O(V2lgV))对于稀疏图来说是会渐进优于Floyd算法的,但是我们知道Dijkstra算法只能用于权重为正数的情况。所以要对图上的权重进行重新映射一次。

重塑权重值
p:<v0,...,vi,...,vk>为从v0vk的一条最短路,则重塑的权重w必须满足两个条件:

1、w(p)=δ(v0,vk)w(p)=δ(v0,vk)
2、w(p)不包含负环 w(p)不包含负环

下面证明取权重映射w(u,v)=w(u,v)+h(u)h(v)时满足条件。

w(p)=ni=1w(vi,vi1)

         =ni=1w(vi,vi1)+h(v0)h(vk)

         =w(p)+h(v0)h(vk)

第一条肯定满足了,因为h(v0),h(vk)是预处理出来的常数,第二条,当p为一负权重的环路时,v0=vk,所以w(p)=w(p)也是负环。

构造函数h

我们采取的方法是这样的,添加一新节点编号为0,到每一个顶点的距离为0,然后我们令h(v)=δ(0,v),由三角不等式h(v)h(u)+w(u,v),所以w(u,v)0

简单写一下伪代码
伪代码

compute G

spfa(G’,0)

foreach vertex v G.V

        h(v=δ(0,v)

foreach edge (u,v)G.E

        w(u,v)=w(u,v)+h(u)h(v)

foreach vertex v G.V

Dijkstra(G,v)

for i=1 to V

       forj=1 to V

           d[i][j]=d[i][j]+h[j]h[i]

c++代码

void spfa(int s)
{
    for(int i=1 ; i<=nv ; ++i)d[s][i] = INF;
    d[s][s] = 0;
    memset(inq,false,sizeof(inq));
    queue<int> q;
    q.push(s);
    inq[s] = true;
    while(!q.empty())
    {
        int u =q.front(); q.pop();
        inq[u] = false;
        for(int i=first[u] ; i!=-1 ; i = nt[i])
        {
            Edge &e = edges[i];
            if(d[s][e.to]>d[s][u]+e.weight)
            {
                d[s][e.to]=d[s][u]+e.weight;
                if(!inq[e.to]){
                    q.push(e.to);inq[e.to] = true;
                }
            }
        }
    }
}
void dijkstra(int s)
{
   bool vis[MAX_V];
   memset(vis,false,sizeof(vis)); 
    for(int i=1 ; i<=nv ; ++i)d[s][i] = INF;
    d[s][s] = 0;

    priority_queue<pii,vector<pii>,greater<pii> > q;
    q.push(pii(0,s));

    while(!q.empty())
    {
        int u = q.top().second;q.pop();
        if(vis[u])continue;
        else vis[u] = true;
        for( int i=first[u] ; i!=-1 ; i = nt[i])
        {
            Edge& e = edges[i];
            if(d[s][e.to]>d[s][u]+e.weight)
            {
                q.push(pii(d[s][e.to],e.to));
                d[s][e.to] = d[s][u]+e.weight ;
            }
        }
    }
}
void compute_Go(int last_edge)//最后一条边编号
{
    int id = last_edge+1;
    for(int i=1 ; i<=nv ;++i )
    {
        read_edge(0,i,0,id);//向边集数组添加新边
        id++;
    }
}
void johnson()
{
    int h[MAX_V];
    compute_Go(ne);
    spfa(0);
    for(int i=1 ; i<=nv ;++i)h[i] = d[0][i];
    //重塑边权重
    for(int i=1 ; i<=ne ;++i)
    {
        Edge &e = edges[i];
        e.weight = e.weight+h[e.from]-h[e.to];
    }
    for(int i=1 ; i<=nv ; ++i)
    {
        dijkstra(i);
    }
    //映射回原来的最短路径
    for(int i=1 ;i<=nv  ;++i)
    {
        for(int j=1 ; j<=nv ; ++j)
            d[i][j] = d[i][j]+h[j]-h[i];
    }
}

Johnson算法实现太复杂,在V不是很大的时候都建议用floyd。
代码测试题poj 1125。。。。就是water problem了。。。

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

Shortest path in multistage graphs 图的最短路径问题

Shortest path in multistage graphs.Find the shortest path from 0 to 15 for the following graph. A ...

所有节点对之间的最短路问题(All Pair Shortest Path)--《算法导论》

给定一个有向图求出里面所有节点对之间的最短路径。 问题的详细描述见Wikipedia:https://en.wikipedia.org/wiki/Shortest_path_problem。 介绍...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

算法导论 所有节点对的最短路径

本章主要讲述: 1.Floyd-Warshall算法:求解任意两点间的最短距离,时间复杂度为O(n^3)。  (1)使用条件&范围:通常可以在任何图中使用,包括有向图、带负权边的图。  (2)弗洛伊德...

Floyd All Shortest Path 所有最短路径的查找 C++程序

Floyd All Shortest Path 所有最短路径的查找在严慧敏这本书也有介绍,但是这本书是讲数据结构的,没有介绍这个算法是什么算法,其实这个算法是动态规划法。 思路: 1 用一个矩阵来...

所有节点之间的最短路问题

摘要:求解所有节点的最短路完全可以用v次Dijkstra算法来解决,但是动态规划提供了一种新的思路同样以O(|v|^3)的时间界解决问题,同时因为循环更加紧凑,实际效率要快的多.基本思路:【1】首先要...

算法导论 | 第25章 所有结点对的最短路径问题

零、前言 前面讲了danyuan

单源最短路径(Single Source Shortest Path)--《算法导论》

关于最短路径的描述请参考维基百科Shortest Path简单总结一下算法导论上描述的计算从单一节点源到图中每一节点的最短路径算法,Bellman-Ford算法及其优化版本spfa,以及对权重非负的图...

所有节点对最短路径

我们这里讲解三个算法,第一个是利用传统的动态规划,第二个也是个动态规划算法,但是基于一种观察结果,他就是warshall算法,第三个算法是将问题转换为没有负数权重的图,再对每个节点调用Dijkstra...

图的所有节点对之间的最短路径—Floyd算法(C++)

Dijkstra算法之后是Floyd算法 Dijkstra算法是求单源最短路径(即固定起点,不固定终点) Floyd算法是求任意点对之间的最短路径(起点和终点都任意)Floyd算法也叫Floyd-...

算法——所有节点对的最短路径:Floyd-Warshall算法、Johnson算法

所有节点对的最短路径 前言 前面介绍了单源最短路径问题,本文是介绍所有节点对的最短路径问题,首先我们会想到用前面所介绍的知识来求解该问题,根据不同类型的图可以用一下几种方法求解: 1、  若无权...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)