所有节点对之间的最短路问题(All Pair Shortest Path)--《算法导论》

原创 2016年08月28日 23:52:05

给定一个有向图求出里面所有节点对之间的最短路径。
问题的详细描述见Wikipedia:https://en.wikipedia.org/wiki/Shortest_path_problem
介绍两个算法O(V3)的Floyd算法和O(V2lgV+VE)的Jhonson算法。分别应对稠密图和稀疏图的情况。

Floyd

这是一个动态规划算法。设dkiji,j之间所有中间节点全部取自<1,2,...,i,...,k>的一条最短路的权重。则状态转移方程如下

dkij={wijmin{dk1ij,dk1ik+dk1ij}x=0x!=0

伪代码

for  k=1 to |V|
       for i=1 to V
              for j=1 to V
                     d[i][j]=min{d[i][j],d[i][k]+d[k][j]}

c++代码

void floyd(int n)
{
    memcpy(d,w,sizeof(w));//初始化d(0)
    for(int k=1 ; k<=n ; ++k)
        for(int i= 1 ; i<=n ; ++i)
            for(int j=1 ; j<=n ; ++j)
                d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}

Johnson(用于稀疏图)

Johnson算法的核心思想是直接对每个顶点做一次Dijkstra,这样时间复杂度只有O(VElgV)(用斐波那契堆实现只需O(V2lgV))对于稀疏图来说是会渐进优于Floyd算法的,但是我们知道Dijkstra算法只能用于权重为正数的情况。所以要对图上的权重进行重新映射一次。

重塑权重值
p:<v0,...,vi,...,vk>为从v0vk的一条最短路,则重塑的权重w必须满足两个条件:

1、w(p)=δ(v0,vk)w(p)=δ(v0,vk)
2、w(p)不包含负环 w(p)不包含负环

下面证明取权重映射w(u,v)=w(u,v)+h(u)h(v)时满足条件。

w(p)=ni=1w(vi,vi1)

         =ni=1w(vi,vi1)+h(v0)h(vk)

         =w(p)+h(v0)h(vk)

第一条肯定满足了,因为h(v0),h(vk)是预处理出来的常数,第二条,当p为一负权重的环路时,v0=vk,所以w(p)=w(p)也是负环。

构造函数h

我们采取的方法是这样的,添加一新节点编号为0,到每一个顶点的距离为0,然后我们令h(v)=δ(0,v),由三角不等式h(v)h(u)+w(u,v),所以w(u,v)0

简单写一下伪代码
伪代码

compute G

spfa(G’,0)

foreach vertex v G.V

        h(v=δ(0,v)

foreach edge (u,v)G.E

        w(u,v)=w(u,v)+h(u)h(v)

foreach vertex v G.V

Dijkstra(G,v)

for i=1 to V

       forj=1 to V

           d[i][j]=d[i][j]+h[j]h[i]

c++代码

void spfa(int s)
{
    for(int i=1 ; i<=nv ; ++i)d[s][i] = INF;
    d[s][s] = 0;
    memset(inq,false,sizeof(inq));
    queue<int> q;
    q.push(s);
    inq[s] = true;
    while(!q.empty())
    {
        int u =q.front(); q.pop();
        inq[u] = false;
        for(int i=first[u] ; i!=-1 ; i = nt[i])
        {
            Edge &e = edges[i];
            if(d[s][e.to]>d[s][u]+e.weight)
            {
                d[s][e.to]=d[s][u]+e.weight;
                if(!inq[e.to]){
                    q.push(e.to);inq[e.to] = true;
                }
            }
        }
    }
}
void dijkstra(int s)
{
   bool vis[MAX_V];
   memset(vis,false,sizeof(vis)); 
    for(int i=1 ; i<=nv ; ++i)d[s][i] = INF;
    d[s][s] = 0;

    priority_queue<pii,vector<pii>,greater<pii> > q;
    q.push(pii(0,s));

    while(!q.empty())
    {
        int u = q.top().second;q.pop();
        if(vis[u])continue;
        else vis[u] = true;
        for( int i=first[u] ; i!=-1 ; i = nt[i])
        {
            Edge& e = edges[i];
            if(d[s][e.to]>d[s][u]+e.weight)
            {
                q.push(pii(d[s][e.to],e.to));
                d[s][e.to] = d[s][u]+e.weight ;
            }
        }
    }
}
void compute_Go(int last_edge)//最后一条边编号
{
    int id = last_edge+1;
    for(int i=1 ; i<=nv ;++i )
    {
        read_edge(0,i,0,id);//向边集数组添加新边
        id++;
    }
}
void johnson()
{
    int h[MAX_V];
    compute_Go(ne);
    spfa(0);
    for(int i=1 ; i<=nv ;++i)h[i] = d[0][i];
    //重塑边权重
    for(int i=1 ; i<=ne ;++i)
    {
        Edge &e = edges[i];
        e.weight = e.weight+h[e.from]-h[e.to];
    }
    for(int i=1 ; i<=nv ; ++i)
    {
        dijkstra(i);
    }
    //映射回原来的最短路径
    for(int i=1 ;i<=nv  ;++i)
    {
        for(int j=1 ; j<=nv ; ++j)
            d[i][j] = d[i][j]+h[j]-h[i];
    }
}

Johnson算法实现太复杂,在V不是很大的时候都建议用floyd。
代码测试题poj 1125。。。。就是water problem了。。。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【hdu】2433 Travel【最短路删边】

题意: 给出一个n节点m条边的图,设这个图所有点之间最短路之和为sum,然后输出删除每一条边之后的sum值,图不联通输出inf 题解: 第一次计算所有图之间最短路之和的时候 在...

第五届山东理工大学ACM网络编程擂台赛

点击打开链接 公共因子 Time Limit: 1000MS Memory limit: 65536K 题目描述    假设字符串也有因数,一个字符串为s1,然后可以由n个字符...

计蒜客 青云的机房组网方案

题面: 有一棵点数10510^5的树,每个节点有一个权值,权值范围是[1,105][1,10^5]的,问所有两个权值互质的节点之间距离的和 题解关于虚树,记下一些key point以后要是忘了可以...
  • a1s4z5
  • a1s4z5
  • 2016年10月03日 13:47
  • 303

单源最短路径(Single Source Shortest Path)--《算法导论》

关于最短路径的描述请参考维基百科Shortest Path简单总结一下算法导论上描述的计算从单一节点源到图中每一节点的最短路径算法,Bellman-Ford算法及其优化版本spfa,以及对权重非负的图...

算法导论笔记:25所有节点对的最短路径问题

本章考虑在给定的有向加权图G=(V, E),对于所有的节点u,v∈V,找到一条从节点u到节点v的最短路径。希望以表格的形式表示输出:第u行第v列给出的是节点u到节点v的最短路径权重。        对...
  • gqtcgq
  • gqtcgq
  • 2015年05月10日 16:02
  • 2107

HDU 2807 The Shortest Path(最短路构造+Floyed算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2807The Shortest PathTime Limit: 4000/2000 MS (Java/O...

[SinGuLaRiTy-1001] Calculation Of The Shortest Path 最短路算法集锦

Copy Right Singularity/Wen Jian 2017 All rights reserved.

算法导论 红黑树 节点删除

RB-DELETE-FIXUP:需要执行Fixup的大前提是:被删除节点y是黑节点。 先说一下删除节点时可能违背的特点。特点一:节点或红或黑。不违背。特点2:根节点是黑节点。当被删除的节点是黑节点,而...

算法导论12.2-8 二叉搜索树的非递归遍历先驱节点分析

算法导论
  • mistakk
  • mistakk
  • 2015年12月28日 16:17
  • 379

算法导论 红黑树加入节点

RB-INSERT-FIXUP:加入一个新节点时可能出现的问题:1.被加入节点是红节点,且原红黑树为空,这时只要把节点x涂成黑色即可。2.被加入的红节点的父节点也是红节点,即z和p[z]都为红色,这就...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:所有节点对之间的最短路问题(All Pair Shortest Path)--《算法导论》
举报原因:
原因补充:

(最多只允许输入30个字)