关闭

MachineLearning:四、逻辑回归in python

标签: python机器学习逻辑回归
263人阅读 评论(0) 收藏 举报
分类:

前面讲了logistic的理论部分,这里我参照《机器学习实战》写了logistic的实现部分。如果对logistic不清楚,请看逻辑回归。 我建立了一个逻辑回归的类,类中包含三个主要函数:

  • fit:拟合模型.
  • predict:进行预测
  • score:求错误率

数据我使用预测患有疝病的马的存活问题。这里面的数据包含368个样本和28个特征。下面是详细代码,我的github上面有数据和代码:logistic regression
下面是具体代码,如果知道logistic原理,下面的代码并不难理解

# -*- coding: utf-8 -*-
"""python
Created on Fri Apr  8 23:59:45 2016

@author: wq

逻辑回归
"""
from numpy import  *


class LogisticRegression():
    '''
    二项逻辑回归模型

    参数
    --------

    '''
    def __init__(self, alpha=1):
        '''
        初始化
        参数
        ---------
        alpha,梯度下降迭代步长
        '''
        self.alpha = alpha
        self.weights = []     #模型权值

    def sigmoid(self, inX):
        #print inX
        return 1/(1+sum(exp(-inX)))

    def fit(self, dataMatrix, classLabels):
        '''根据训练数据拟合模型

        参数
        ------------
        dataMatrix:
            训练样本属性矩阵
            类型:array
        classLabels:
            训练样本标签
            类型:list

        '''
        row,col = dataMatrix.shape
        if len(self.weights) == 0:
            weights = ones(col)   #初始化权值矩阵2
        else:
            weights = self.weights
        diff = weights      #权值变化矩阵,初始化为权值矩阵
        j = 0 #迭代次数
        while(abs(max(diff))>0.001):     #当权值变化很小的时停止迭代。
            dataIndex = range(row)
            for i in range(row):
                alpha = 4/(self.alpha+i)+0.0001    #alpha随着每次迭代,下降。参数趋于稳定
                randIndex = int(random.uniform(0,len(dataIndex)))#随机选取训练对象
                h = self.sigmoid(sum(dataMatrix[randIndex]*weights))#sigmoid求值
                error = classLabels[randIndex] - h      #误差项

                diff = weights      
                weights = weights + alpha * error * dataMatrix[randIndex]#权值更新
                diff = weights - diff                #权值差异
                del(dataIndex[randIndex])
        self.weights = weights
        #print weights

    def predict(self,dataList):
        '''
        训练的二项逻辑回归预测

        参数
        --------
        dataList:
            待预测样本属性,
            类型:list
        '''
        if len(self.weights) == 0:
            raise KeyError,("没有进行模型训练")#如果没有进行fit预测,抛出异常
        prob = self.sigmoid(sum(dataList*self.weights))#概率
        if prob > 0.5:return 1
        else: return 0

    def score(self,dataMatrix, classLabels):
        '''
        评价模型性能


        参数
        ------------
        dataMatrix:
            测试样本属性举证
            属性:array
        classLabels:
            测试样本类别,这里只有1、0两类
            属性:list

        return
        ---------
        errorRate:错误率
        '''
        numData = len(dataMatrix)
        errorCount = 0
        j = 0 #行数记录,
        for line in dataMatrix:
            #print '预测结果',self.predict(line)
            #print '样本标签',classLabels[j]
            if int(self.predict(line)) != int(classLabels[j]):
                errorCount += 1
            j += 1
        #print errorCount
        errorRate = (float(errorCount)/numData)
        print "the error rate of this test is: %f" % errorRate
        return errorRate

if __name__=='__main__':
    frTrain = open('horseColicTraining.txt')#读取数据
    frTest = open('horseColicTest.txt')

    #读取训练集
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        line = line.strip().split('\t')
        trainingSet.append(map(float, line)[:-1])
        trainingLabels.append(float(line[21]))

    #读取测试集
    testSet = [];testLabels = []
    for line in frTest:
        line = line.strip().split('\t')
        testSet.append(map(float, line)[:-1])
        testLabels.append(line[21])

    #实例化
    clf = LogisticRegression(1.0)
    #迭代10次
    for i in range(10):
        clf.fit(array(trainingSet), trainingLabels)
        clf.score(array(testSet), testLabels)

参考资料

《机器学习实战》

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:55336次
    • 积分:1383
    • 等级:
    • 排名:千里之外
    • 原创:88篇
    • 转载:4篇
    • 译文:2篇
    • 评论:7条
    最新评论