# MachineLearning:四、逻辑回归in python

263人阅读 评论(0)

• fit:拟合模型.
• predict：进行预测
• score：求错误率

# -*- coding: utf-8 -*-
"""python
Created on Fri Apr  8 23:59:45 2016

@author: wq

"""
from numpy import  *

class LogisticRegression():
'''
二项逻辑回归模型

参数
--------

'''
def __init__(self, alpha=1):
'''
初始化
参数
---------
alpha,梯度下降迭代步长
'''
self.alpha = alpha
self.weights = []     #模型权值

def sigmoid(self, inX):
#print inX
return 1/(1+sum(exp(-inX)))

def fit(self, dataMatrix, classLabels):
'''根据训练数据拟合模型

参数
------------
dataMatrix:
训练样本属性矩阵
类型：array
classLabels：
训练样本标签
类型：list

'''
row,col = dataMatrix.shape
if len(self.weights) == 0:
weights = ones(col)   #初始化权值矩阵2
else:
weights = self.weights
diff = weights      #权值变化矩阵，初始化为权值矩阵
j = 0 #迭代次数
while(abs(max(diff))>0.001):     #当权值变化很小的时停止迭代。
dataIndex = range(row)
for i in range(row):
alpha = 4/(self.alpha+i)+0.0001    #alpha随着每次迭代，下降。参数趋于稳定
randIndex = int(random.uniform(0,len(dataIndex)))#随机选取训练对象
h = self.sigmoid(sum(dataMatrix[randIndex]*weights))#sigmoid求值
error = classLabels[randIndex] - h      #误差项

diff = weights
weights = weights + alpha * error * dataMatrix[randIndex]#权值更新
diff = weights - diff                #权值差异
del(dataIndex[randIndex])
self.weights = weights
#print weights

def predict(self,dataList):
'''
训练的二项逻辑回归预测

参数
--------
dataList：
待预测样本属性,
类型：list
'''
if len(self.weights) == 0:
raise KeyError,("没有进行模型训练")#如果没有进行fit预测，抛出异常
prob = self.sigmoid(sum(dataList*self.weights))#概率
if prob > 0.5:return 1
else: return 0

def score(self,dataMatrix, classLabels):
'''
评价模型性能

参数
------------
dataMatrix:
测试样本属性举证
属性：array
classLabels:
测试样本类别，这里只有1、0两类
属性：list

return
---------
errorRate：错误率
'''
numData = len(dataMatrix)
errorCount = 0
j = 0 #行数记录，
for line in dataMatrix:
#print '预测结果',self.predict(line)
#print '样本标签',classLabels[j]
if int(self.predict(line)) != int(classLabels[j]):
errorCount += 1
j += 1
#print errorCount
errorRate = (float(errorCount)/numData)
print "the error rate of this test is: %f" % errorRate
return errorRate

if __name__=='__main__':
frTrain = open('horseColicTraining.txt')#读取数据
frTest = open('horseColicTest.txt')

#读取训练集
trainingSet = []; trainingLabels = []
line = line.strip().split('\t')
trainingSet.append(map(float, line)[:-1])
trainingLabels.append(float(line[21]))

#读取测试集
testSet = [];testLabels = []
for line in frTest:
line = line.strip().split('\t')
testSet.append(map(float, line)[:-1])
testLabels.append(line[21])

#实例化
clf = LogisticRegression(1.0)
#迭代10次
for i in range(10):
clf.fit(array(trainingSet), trainingLabels)
clf.score(array(testSet), testLabels)

# 参考资料

《机器学习实战》

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：55336次
• 积分：1383
• 等级：
• 排名：千里之外
• 原创：88篇
• 转载：4篇
• 译文：2篇
• 评论：7条
阅读排行
评论排行
最新评论