关闭
当前搜索:

【python数据挖掘课程】二十二.Basemap地图包安装入门及基础知识讲解

这是《Python数据挖掘课程》系列文章,也是我上课内容及书籍中的一个案例。本文主要讲述Matplotlib子包,负责地图绘制,即Basemap扩展包。在做数据挖掘或可视化分析时,常常需要将数据显示到地图上,比如城市人口、空气环境、GDP分布、资源销售、全球热图等。本文主要讲解安装入门以及官网介绍的基础知识,后面文章将结合实例深入讲解。内容包括:    1.Basemap安装过程    2.地图绘...
阅读(301) 评论(0)

【python数据挖掘课程】二十一.朴素贝叶斯分类器详解及中文文本舆情分析

这是《Python数据挖掘课程》系列文章,也是我上课内容及书籍中的一个案例。本文主要讲述朴素贝叶斯分类算法并实现中文数据集的舆情分析案例,希望这篇文章对大家有所帮助,提供些思路。内容包括:    1.朴素贝叶斯数学原理知识    2.naive_bayes用法及简单案例    3.中文文本数据集预处理    4.朴素贝叶斯中文文本舆情分析本篇文章为基础性文章,希望对你有所帮助,如果文章中存在错误或...
阅读(314) 评论(2)

【python数据挖掘课程】二十.KNN最近邻分类算法分析详解及平衡秤TXT数据集读取

这是《Python数据挖掘课程》系列文章,也是我这学期上课的部分内容及书籍的一个案例。本文主要讲述KNN最近邻分类算法、简单实现分析平衡秤数据集,希望这篇文章对大家有所帮助,同时提供些思路。内容包括: 1.KNN算法基础原理知识 2.最近邻分类算法分析预测坐标类型 3.Pandas读取TXT数据集 4.KNN分析平衡秤数据集 5.算法优化 本篇文章为基础性文章,希望对你有所帮助,如果文章中存在错误或不足支持,还请海涵~同时,推荐大家阅读我以前的文章了解基础知识。自己真...
阅读(750) 评论(4)

【python数据挖掘课程】十九.鸢尾花数据集可视化、线性回归、决策树花样分析

这是《Python数据挖掘课程》系列文章,也是我这学期上课的部分内容。本文主要讲述鸢尾花数据集的各种分析,包括可视化分析、线性回归分析、决策树分析等,通常一个数据集是可以用于多种分析的,希望这篇文章对大家有所帮助,同时提供些思考。内容包括: 1.鸢尾花数据集可视化分析 2.线性回归分析鸢尾花花瓣长度和宽度的关系 3.决策树分析鸢尾花数据集 4.Kmeans聚类分析鸢尾花数据集 本篇文章为基础性文章,希望对你有所帮助,如果文章中存在错误或不足支持,还请海涵~这也是自己书籍几章的...
阅读(1062) 评论(0)

【python数据挖掘课程】十八.线性回归及多项式回归分析四个案例分享

这是《Python数据挖掘课程》系列文章,也是我这学期大数据金融学院上课的部分内容。本文主要讲述和分享线性回归作业中,学生们做得比较好的四个案例,经过我修改后供大家学习,内容包括:    1.线性回归预测Pizza价格案例    2.线性回归分析波士顿房价案例    3.随机数据集一元线性回归分析和三维回归分析案例    4.Pizza数据集一元线性回归和多元线性回归分析本篇文章为初始篇,基础文章...
阅读(1071) 评论(4)

【python数据挖掘课程】十七.社交网络Networkx库分析人物关系(初识篇)

这是《Python数据挖掘课程》系列文章,也是我大数据金融学院上课的部分内容。本章主要讲述复杂网络或社交网络基础知识,通过Networkx扩展包绘制人物关系,并分析了班级学生的关系学院信息。本篇文章为初始篇,基础文章希望对你有所帮助,如果文章中存在错误或不足支持,还请海涵~...
阅读(1347) 评论(3)

【python数据挖掘课程】十六.逻辑回归LogisticRegression分析鸢尾花数据

回归算法作为统计学中最重要的工具之一,它通过建立一个回归方程用来预测目标值,并求解这个回归方程的回归系数。本篇文章详细讲解了逻辑回归模型的原理知识,结合Sklearn机器学习库的LogisticRegression算法分析了鸢尾花分类情况。更多知识点希望读者下来后进行拓展,也推荐大学从Sklearn开源知识官网学习最新的实例。 希望文章对你有所帮助,祝自己和娜老师教师节快乐~接着工作去了。...
阅读(2904) 评论(2)

【python数据挖掘课程】十四.Scipy调用curve_fit实现曲线拟合

前面系列文章讲过各种知识,包括绘制曲线、散点图、幂分布等,而如何在在散点图一堆点中拟合一条直线,也变得非常重要。这篇文章主要讲述调用Scipy扩展包的curve_fit函数实现曲线拟合,同时计算出拟合的函数、参数等。希望文章对你有所帮助,如果文章中存在错误或不足之处,还请海涵~...
阅读(10523) 评论(17)

[python数据分析] 简述幂率定律及绘制Power-law函数

这篇文章主要是最近研究人类行为应用的内容,主要简单叙述下复杂网络的幂率分布以及绘制Power-law函数一些知识,同时是一篇在线笔记。希望对您有所帮助,如果文章中存在不足或错误的地方,还请海涵~ 1.幂率分布 2.Zipf定律 3.Scale free 4.Python绘制幂率分布 这篇文章基础知识转载了别人的内容,这里强烈推荐大家阅读原文。此篇文章主要是讲述代码部分,定律我也还在学习中,和大家共勉。...
阅读(3542) 评论(0)

【python数据挖掘课程】十二.Pandas、Matplotlib结合SQL语句对比图分析

这篇文章主要讲述Python常用数据分析包Numpy、Pandas、Matplotlib结合MySQL分析数据,前一篇文章 "【python数据挖掘课程】十一.Pandas、Matplotlib结合SQL语句可视化分析" 讲述了MySQL绘图分析的好处,这篇文字进一步加深难度,对数据集进行了对比分析。 数据分析结合SQL语句的效果真的很好,很多大神看到可能会笑话晚辈,但是如果你是数据分析的新人,那我强烈推荐,尤其是结合网络爬虫进行数据分析的。希望这篇文章对你有所帮助。...
阅读(3365) 评论(0)

【Python数据挖掘课程】八.关联规则挖掘及Apriori实现购物推荐

这篇文章主要介绍三个知识点,也是我《数据挖掘与分析》课程讲课的内容。        1.关联规则挖掘概念及实现过程;        2.Apriori算法挖掘频繁项集;        3.Python实现关联规则挖掘及置信度、支持度计算。关联规则(Association Rules)是反映一个事物与其他事物之间的相互依存性和关联性,如果两个或多个事物之间存在一定的关联关系,那么,其中一个事物就能通过其他事物预测到。关联规则是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。...
阅读(11746) 评论(9)

【Python数据挖掘课程】七.PCA降维操作及subplot子图绘制

这篇文章主要介绍四个知识点,也是我那节课讲课的内容。 1.PCA降维操作; 2.Python中Sklearn的PCA扩展包; 3.Matplotlib的subplot函数绘制子图; 4.通过Kmeans对糖尿病数据集进行聚类,并绘制子图。 前文推荐,希望这篇文章对你有所帮助,尤其是我的学生和学习数据挖掘、机器学习、大数据的博友。...
阅读(6811) 评论(0)

【Python数据挖掘课程】六.Numpy、Pandas和Matplotlib包基础知识

前面几篇文章采用的案例的方法进行介绍的,这篇文章主要介绍Python常用的扩展包,同时结合数据挖掘相关知识介绍该包具体的用法,主要介绍Numpy、Pandas和Matplotlib三个包。目录: 一.Python常用扩展包 二.Numpy科学计算包 三.Pandas数据分析包 四.Matplotlib绘图包 希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,这些基础知识真的非常重要。如果文章中存在不足或错误的地方,还请海涵~...
阅读(12802) 评论(5)

【Python数据挖掘课程】五.线性回归知识及预测糖尿病实例

今天主要讲述的内容是关于一元线性回归的知识,Python实现,包括以下内容: 1.机器学习常用数据集介绍 2.什么是线性回顾 3.LinearRegression使用方法 4.线性回归判断糖尿病 同时这篇文章是我上课的内容,所以参考了一些知识,强烈推荐大家学习斯坦福的机器学习Ng教授课程和Scikit-Learn中的内容。由于自己数学不是很好,自己也还在学习中,所以文章以代码和一元线性回归为主,数学方面的当自己学到一定的程度,才能进行深入的分享...
阅读(9271) 评论(11)

【Python数据挖掘课程】四.决策树DTC数据分析及鸢尾数据集分析

今天主要讲述的内容是关于决策树的知识,主要包括以下内容:        1.分类及决策树算法介绍        2.鸢尾花卉数据集介绍        3.决策树实现鸢尾数据集分析     决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常用来解决分类和回归问题。常见的算法包括:分类及回归树, ID3, C4 等  希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解。如果文章中存在不足或错误的地方,还请海涵~...
阅读(9560) 评论(4)

【Python数据挖掘课程】三.Kmeans聚类代码实现、作业及优化

这篇文章直接给出上次关于Kmeans聚类的篮球远动员数据分析案例,同时介绍这次作业同学们完成的图例,最后介绍Matplotlib包绘图的优化知识。希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解。如果文章中存在不足或错误的地方,还请海涵~...
阅读(14580) 评论(8)

【Python数据挖掘课程】二.Kmeans聚类数据分析及Anaconda介绍

这次课程主要讲述一个关于Kmeans聚类的数据分析案例,通过这个案例让同学们简单了解大数据分析的基本流程,以及使用Python实现相关的聚类分析。 主要内容包括: 1.Anaconda软件的安装过程及简单配置 2.聚类及Kmeans算法介绍 3.案例分析:Kmeans实现运动员位置聚集 希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解。如果文章中存在不足或错误的地方,还请海涵~...
阅读(10544) 评论(16)

[python] 基于k-means和tfidf的文本聚类代码简单实现

基本步骤包括: 1.使用python+selenium分析dom结构爬取百度|互动百科文本摘要信息; 2.使用jieba结巴分词对文本进行中文分词,同时插入字典关于关键词; 3.scikit-learn对文本内容进行tfidf计算并构造N*M矩阵(N个文档 M个特征词); 4.再使用K-means进行文本聚类(省略特征词过来降维过程); 5.最后对聚类的结果进行简单的文本处理,按类簇归类,也可以计算P/R/F特征值;...
阅读(34223) 评论(38)

Python简单实现基于VSM的余弦相似度计算

在知识图谱构建阶段的实体对齐和属性值决策过程中、判断一篇文章是否是你喜欢的文章、比较两篇文章的相似性等,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识。这篇文章主要是先叙述VSM和余弦相似度相关理论知识,然后引用阮一峰大神的例子进行解释,最后通过Python简单实现百度百科和互动百科Infobox的余弦相似度计算。基本步骤:1.分别统计两个文档的关键词 2.两篇文章的关键词合并成一个集合...希望文章对你有所帮助~...
阅读(17017) 评论(3)

知识图谱相关会议之观后感分享与学习总结

目录:一.面向知识图谱的信息抽取技术 二.常识知识在结构化知识库构建中的应用 三.浅谈逻辑规则在知识图谱表示学习中的应用 四.大规模知识图谱表示学习 五.知识图谱中推理技术及工具介绍 六.多语言知识图谱中的知识链接 七.知识图谱关键技术和在企业中的应用 由于我毕设是与知识图谱、实体消歧、实体对齐、知识集成相关的,所以去听了知识图谱相关的报告;报告中采用手写笔记,所以没有相应的PPT和原图(遗憾),很多图是我自己画的找的,可能存在遗漏或表述不清的地方,请海涵~很多算法还在学习研究中,最后希望文...
阅读(9108) 评论(6)
22条 共2页1 2 下一页 尾页
    个人资料
    • 访问:2326234次
    • 积分:21610
    • 等级:
    • 排名:第413名
    • 原创:270篇
    • 转载:10篇
    • 译文:0篇
    • 评论:1651条
    个人博客
    作者:杨秀璋
    学历:本科-北京理工大学
               硕士-北京理工大学
    现任教于贵财财经大学信息学院
    http://www.eastmountyxz.com

    简介:自幼受贵州大山的熏陶,养成了诚实质朴的性格。经过寒窗苦读,考入BIT,为完成自己的教师梦,放弃IT、航天等工作,成为贵财一名大学教师,并想把自己所学所感真心传授给自己的学生,帮助更多陌生人。

    贵州纵美路迢迢,
    为负劳心此一遭。
    收得破书三四本,
    也堪将去教尔曹。

    娜美人生,醉美生活。
    他和她经历风雨,慢慢变老。
    博客专栏
    牛人博客
    最新评论