关闭
当前搜索:

【python数据挖掘课程】十六.逻辑回归LogisticRegression分析鸢尾花数据

回归算法作为统计学中最重要的工具之一,它通过建立一个回归方程用来预测目标值,并求解这个回归方程的回归系数。本篇文章详细讲解了逻辑回归模型的原理知识,结合Sklearn机器学习库的LogisticRegression算法分析了鸢尾花分类情况。更多知识点希望读者下来后进行拓展,也推荐大学从Sklearn开源知识官网学习最新的实例。 希望文章对你有所帮助,祝自己和娜老师教师节快乐~接着工作去了。...
阅读(2904) 评论(2)

【python数据挖掘课程】十四.Scipy调用curve_fit实现曲线拟合

前面系列文章讲过各种知识,包括绘制曲线、散点图、幂分布等,而如何在在散点图一堆点中拟合一条直线,也变得非常重要。这篇文章主要讲述调用Scipy扩展包的curve_fit函数实现曲线拟合,同时计算出拟合的函数、参数等。希望文章对你有所帮助,如果文章中存在错误或不足之处,还请海涵~...
阅读(10523) 评论(17)

【python数据挖掘课程】十二.Pandas、Matplotlib结合SQL语句对比图分析

这篇文章主要讲述Python常用数据分析包Numpy、Pandas、Matplotlib结合MySQL分析数据,前一篇文章 "【python数据挖掘课程】十一.Pandas、Matplotlib结合SQL语句可视化分析" 讲述了MySQL绘图分析的好处,这篇文字进一步加深难度,对数据集进行了对比分析。 数据分析结合SQL语句的效果真的很好,很多大神看到可能会笑话晚辈,但是如果你是数据分析的新人,那我强烈推荐,尤其是结合网络爬虫进行数据分析的。希望这篇文章对你有所帮助。...
阅读(3365) 评论(0)

【Python数据挖掘课程】八.关联规则挖掘及Apriori实现购物推荐

这篇文章主要介绍三个知识点,也是我《数据挖掘与分析》课程讲课的内容。        1.关联规则挖掘概念及实现过程;        2.Apriori算法挖掘频繁项集;        3.Python实现关联规则挖掘及置信度、支持度计算。关联规则(Association Rules)是反映一个事物与其他事物之间的相互依存性和关联性,如果两个或多个事物之间存在一定的关联关系,那么,其中一个事物就能通过其他事物预测到。关联规则是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。...
阅读(11746) 评论(9)

【Python数据挖掘课程】七.PCA降维操作及subplot子图绘制

这篇文章主要介绍四个知识点,也是我那节课讲课的内容。 1.PCA降维操作; 2.Python中Sklearn的PCA扩展包; 3.Matplotlib的subplot函数绘制子图; 4.通过Kmeans对糖尿病数据集进行聚类,并绘制子图。 前文推荐,希望这篇文章对你有所帮助,尤其是我的学生和学习数据挖掘、机器学习、大数据的博友。...
阅读(6811) 评论(0)

【Python数据挖掘课程】六.Numpy、Pandas和Matplotlib包基础知识

前面几篇文章采用的案例的方法进行介绍的,这篇文章主要介绍Python常用的扩展包,同时结合数据挖掘相关知识介绍该包具体的用法,主要介绍Numpy、Pandas和Matplotlib三个包。目录: 一.Python常用扩展包 二.Numpy科学计算包 三.Pandas数据分析包 四.Matplotlib绘图包 希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,这些基础知识真的非常重要。如果文章中存在不足或错误的地方,还请海涵~...
阅读(12802) 评论(5)

【Python数据挖掘课程】五.线性回归知识及预测糖尿病实例

今天主要讲述的内容是关于一元线性回归的知识,Python实现,包括以下内容: 1.机器学习常用数据集介绍 2.什么是线性回顾 3.LinearRegression使用方法 4.线性回归判断糖尿病 同时这篇文章是我上课的内容,所以参考了一些知识,强烈推荐大家学习斯坦福的机器学习Ng教授课程和Scikit-Learn中的内容。由于自己数学不是很好,自己也还在学习中,所以文章以代码和一元线性回归为主,数学方面的当自己学到一定的程度,才能进行深入的分享...
阅读(9271) 评论(11)

Python趣味代码整合之提升学生编程兴趣

这篇文章主要是整合一些趣味代码,一方面自己对这些内容比较感兴趣,另一方面希望这些代码能提升学生的编程兴趣,其主旨是代码能在我的电脑上运行并有些趣味。 参考资料: 知乎 - 可以用 Python 编程语言做哪些神奇好玩的事情?...
阅读(4695) 评论(4)

【Python数据挖掘课程】四.决策树DTC数据分析及鸢尾数据集分析

今天主要讲述的内容是关于决策树的知识,主要包括以下内容:        1.分类及决策树算法介绍        2.鸢尾花卉数据集介绍        3.决策树实现鸢尾数据集分析     决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常用来解决分类和回归问题。常见的算法包括:分类及回归树, ID3, C4 等  希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解。如果文章中存在不足或错误的地方,还请海涵~...
阅读(9560) 评论(4)

【Python数据挖掘课程】三.Kmeans聚类代码实现、作业及优化

这篇文章直接给出上次关于Kmeans聚类的篮球远动员数据分析案例,同时介绍这次作业同学们完成的图例,最后介绍Matplotlib包绘图的优化知识。希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解。如果文章中存在不足或错误的地方,还请海涵~...
阅读(14580) 评论(8)

【Python数据挖掘课程】二.Kmeans聚类数据分析及Anaconda介绍

这次课程主要讲述一个关于Kmeans聚类的数据分析案例,通过这个案例让同学们简单了解大数据分析的基本流程,以及使用Python实现相关的聚类分析。 主要内容包括: 1.Anaconda软件的安装过程及简单配置 2.聚类及Kmeans算法介绍 3.案例分析:Kmeans实现运动员位置聚集 希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解。如果文章中存在不足或错误的地方,还请海涵~...
阅读(10544) 评论(16)

[python] 使用scikit-learn工具计算文本TF-IDF值

在文本聚类、文本分类或者比较两个文档相似程度过程中,可能会涉及到TF-IDF值的计算。这里主要讲述基于Python的机器学习模块和开源工具:scikit-learn。文章包括:一.Scikit-learn概念 1.概念知识 2.安装软件; 二.TF-IDF基础知识 1.TF-IDF 2.举例介绍; 三.TF-IDF调用两个方法 1.CountVectorizer 2.TfidfTransformer 3.示例 希望文章对你有所帮助~...
阅读(21593) 评论(16)

[python] LDA处理文档主题分布及分词、词频、tfidf计算

这篇文章主要是讲述如何通过LDA处理文本内容TXT,并计算其文档主题分布,主要是核心代码为主和运行效果图形。希望文章对你有所帮助吧尤其是初学者~哎!最后感叹下时光吧,仅以此诗纪念这三年写博客的坚持和北理工的最后四个月:但行好事,莫问前程。待随满天李桃,再追学友趣事。...
阅读(16505) 评论(42)

[python] LDA处理文档主题分布代码入门笔记

以前只知道LDA是个好东西,但自己并没有真正去使用过。同时,关于它的文章也非常之多,推荐大家阅读书籍《LDA漫游指南》,最近自己在学习文档主题分布和实体对齐中也尝试使用LDA进行简单的实验。这篇文章主要是讲述Python下LDA的基础用法,作为一篇入门文章,它主要源自官方文档,希望对大家有所帮助。如果文章中有错误或不足之处,还请海涵~...
阅读(17080) 评论(15)

[python] Kmeans文本聚类算法+PAC降维+Matplotlib显示聚类图像

本文主要讲述以下几点: 1.通过scikit-learn计算文本内容的tfidf并构造N*M矩阵(N个文档 M个特征词); 2.调用scikit-learn中的K-means进行文本聚类; 3.使用PAC进行降维处理,每行文本表示成两维数据; 4.最后调用Matplotlib显示聚类效果图。...
阅读(11100) 评论(8)

神经网络和机器学习基础入门分享

最近在做知识图谱实体对齐和属性对齐中,简单用了下Word2vec谷歌开源代码。本文主要讲述了机器学习的一些入门知识以及神经网络的基础概念,同时引入了很多例子进行讲解。 机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律),并利用此模型预测未来(是否迟到)的一种方法。人工神经网络(artificial neural network,缩写ANN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。希望对大家有所帮助~...
阅读(7552) 评论(2)

知识图谱相关会议之观后感分享与学习总结

目录:一.面向知识图谱的信息抽取技术 二.常识知识在结构化知识库构建中的应用 三.浅谈逻辑规则在知识图谱表示学习中的应用 四.大规模知识图谱表示学习 五.知识图谱中推理技术及工具介绍 六.多语言知识图谱中的知识链接 七.知识图谱关键技术和在企业中的应用 由于我毕设是与知识图谱、实体消歧、实体对齐、知识集成相关的,所以去听了知识图谱相关的报告;报告中采用手写笔记,所以没有相应的PPT和原图(遗憾),很多图是我自己画的找的,可能存在遗漏或表述不清的地方,请海涵~很多算法还在学习研究中,最后希望文...
阅读(9108) 评论(6)

[转载] 机器学习科普文章:“一文读懂机器学习,大数据/自然语言处理/算法全有了”

PS:文章主要转载自CSDN大神"黑夜路人"的文章:           http://blog.csdn.net/heiyeshuwu/article/details/43483655       本文主要对机器学习进行科普,包括机器学习的定义、范围、方法,包括机器学习的研究领域:模式识别、计算机视觉、语音识别、自然语言处理、统计学习和数据挖掘.这是一篇非常好的文章,尤其感学原文作者~...
阅读(4943) 评论(0)

【学习排序】 Learning to Rank 中Listwise关于ListNet算法讲解及实现

前一篇文章"Learning to Rank中Pointwise关于PRank算法源码实现"讲述了基于点的学习排序PRank算法的实现.该篇文章主要讲述Listwise Approach和基于神经网络的ListNet算法及Java实现.包括: 1.基于列的学习排序(Listwise)介绍 2.ListNet算法介绍 3.ListNet算法Java实现 LTR中单文档方法是将训练集里每一个文档当做一个训练实例,文档对方法是将同一个查询的搜索结果里任意两个文档对作为一个训练实例,...
阅读(10705) 评论(16)

[置顶] 【学习排序】 Learning to Rank中Pointwise关于PRank算法源码实现

讲述的就是Learning to Rank中Pointwise的认识及PRank算法的实现.主要从以下四个方面进行讲述: 1.学习排序(Learning to Rank)概念 2.基于点的排序算法(Pointwise)介绍 3.基于顺序回归(Ordinal Regression-based)的PRank排序算法 4.PRank算法Java\C++实现及总结 同时讲述过程中遇到的困难及解决方法,希望文章对大家有所帮助,如果文章中有错误或不足之处!见谅~...
阅读(18173) 评论(33)
22条 共2页1 2 下一页 尾页
    个人资料
    • 访问:2326239次
    • 积分:21610
    • 等级:
    • 排名:第413名
    • 原创:270篇
    • 转载:10篇
    • 译文:0篇
    • 评论:1651条
    个人博客
    作者:杨秀璋
    学历:本科-北京理工大学
               硕士-北京理工大学
    现任教于贵财财经大学信息学院
    http://www.eastmountyxz.com

    简介:自幼受贵州大山的熏陶,养成了诚实质朴的性格。经过寒窗苦读,考入BIT,为完成自己的教师梦,放弃IT、航天等工作,成为贵财一名大学教师,并想把自己所学所感真心传授给自己的学生,帮助更多陌生人。

    贵州纵美路迢迢,
    为负劳心此一遭。
    收得破书三四本,
    也堪将去教尔曹。

    娜美人生,醉美生活。
    他和她经历风雨,慢慢变老。
    博客专栏
    牛人博客
    最新评论