数字图像处理,自适应中值滤波的C++实现

原创 2015年01月22日 11:11:40

自适应中值滤波的原理

     自适应中值滤波的思想是根据噪声密度改变滤波窗口的大小,同时对噪声点和信号点采取不同的处理方法。对噪声点进行中值滤波,对信号点保持其灰度值不变。

       设为fij为点(i,j)的灰度值,Sij为当前工作窗口,fmin,fmax和fmed分别为Sij中的灰度最小值、灰度最大值和灰度中值,令maxize为预设的允许最大窗口。自适应中值滤波的步骤如下:

1)若 fmin< fmed <fmax,则转至第2步;否则增大窗口的尺寸。若的尺寸小于的尺寸,则重复第1步;否则输出。

2)若 fmin< fij <fmax,则输出fij;否则输出fmed

可以看出,算法中噪声的检测和认定时以 fmin fmax为基准的,如果 fmin< fmed <fmax,表明fmed 不是噪声,

接着根据fmin< fij <fmax判断fij 是否为噪声,当fmedfij 都不是脉冲噪声时,优先输出fij

引入自适应中值滤波算法主要有3 个目的: 

一是去除脉冲噪声;

二是平滑其他非脉冲噪声;

三是减少诸如物体边界细化或粗化等失真。

自适应中值滤波的流程图如下图所示。



参考代码:

/////////////自适应中值滤波/////////////////////////////////
int adp_media_filter(unsigned char* inbuffer,int width,int height,int maxwinsize,unsigned char* outbuffer)
{
	int pos = (maxwinsize - 1) / 2;
	memcpy(outbuffer,inbuffer,width*height);       
	for (int m = pos; m < height - pos; m++)//当前中心位置(m,n)
	{
		for (int n = pos; n < width - pos; n++)
		{
			int curwinsize = 3;     //设置初始滤波窗口大小
			while (curwinsize <= maxwinsize)
			{
				int curpos = (curwinsize - 1) / 2;
				int winpos = 0;
				int lens = curwinsize*curwinsize;
				int* windows = new int[lens];
				for (int i = -curpos; i < curpos + 1; i++)
					for (int j = -curpos; j < curpos + 1; j++)
						windows[winpos++] = inbuffer[(m + i)*width + n + j];
				
				sort(windows, lens);
				int fmin = windows[0];
				int fmax = windows[lens - 1];
				int fmed = windows[(lens - 1) / 2];
				int A1 = fmed - fmin;
				int A2 = fmed - fmax;
				if (A1 > 0 && A2 < 0)//第一层噪声检测,fmed是不是噪声
				{
					//满足fmin< fmed < fmax,表明fmed不是噪声
					int B1 = inbuffer[m*width + n] - fmin;//当前窗口中心值inbuffer[m*width + n]
					int B2 = inbuffer[m*width + n] - fmax;
					//满足fmin< fmn < fmax,表明fmn不是噪声
					if (B1 > 0 && B2 < 0)//第二层检测,fmn是不是噪声
						outbuffer[m*width + n] = inbuffer[m*width + n];//fmn和fmed都不是噪声优先输出当前窗口中心值
					else
						outbuffer[m*width + n] = fmed;//fmn是噪声,输出中间值重新估计该点
					delete[] windows;
					windows = NULL;
					break;
				}
				curwinsize += 2;
				delete[] windows;
				windows = NULL;
			}
		}
	}
	//对边界进行处理,与中值滤波一样
	for (int k = 0;k < pos;k++)
		for (int l =pos;l < width-pos;l++)
			outbuffer[k*width+l] = outbuffer[pos*width+l];
	for(int a=height-pos;a < height;a++)
		for(int b=pos;b < width-pos;b++)
			outbuffer[a*width+b] = outbuffer[(height-pos-1)*width+b];
	for(int c = 0;c < pos;c++)
		for(int d=0;d < height;d++)
			outbuffer[d*width+c] = outbuffer[d*width+pos];
	for (int e = width-pos;e < width;e++)
		for(int f = 0;f < height;f++)
			outbuffer[f*width+e] = outbuffer[f*width+width-pos-1];

	return 0;	
}


实验结果:

以下所有结果均为C++处理。
1,对原图像进行处理的结果(左为原图)
可以发现,自适应中值滤波对图像边缘的保护相当好


2,对乘性噪声图像进行处理的结果(左为噪声图)

注意该噪声为matlab中的乘性噪声,可以发现对乘性噪声的处理效果相当差。



3,对椒盐噪声图像进行处理的结果(左为噪声图)

注意该噪声为matlab中的椒盐噪声,可以发现对椒盐噪声的处理效果优秀。



最后在此处收录一份别人写的matlab程序:

function f = adpmedian(g, Smax)
%ADPMEDIAN Perform adaptive median filtering.
%   F = ADPMEDIAN(G, SMAX) performs adaptive median filtering of
%   image G.  The median filter starts at size 3-by-3 and iterates up
%   to size SMAX-by-SMAX. SMAX must be an odd integer greater than 1.

%   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
%   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
%   $Revision: 1.5 $  $Date: 2003/11/21 14:19:05 $

% SMAX must be an odd, positive integer greater than 1.
if (Smax <= 1) | (Smax/2 == round(Smax/2)) | (Smax ~= round(Smax))
   error('SMAX must be an odd integer > 1.')
end
[M, N] = size(g);

% Initial setup.
f = g;
f(:) = 0;
alreadyProcessed = false(size(g));

% Begin filtering.
for k = 3:2:Smax
   zmin = ordfilt2(g, 1, ones(k, k), 'symmetric');
   zmax = ordfilt2(g, k * k, ones(k, k), 'symmetric');
   zmed = medfilt2(g, [k k], 'symmetric');
   
   processUsingLevelB = (zmed > zmin) & (zmax > zmed) & ...
       ~alreadyProcessed; 
   zB = (g > zmin) & (zmax > g);
   outputZxy  = processUsingLevelB & zB;
   outputZmed = processUsingLevelB & ~zB;
   f(outputZxy) = g(outputZxy);
   f(outputZmed) = zmed(outputZmed);
   
   alreadyProcessed = alreadyProcessed | processUsingLevelB;
   if all(alreadyProcessed(:))
      break;
   end
end

% Output zmed for any remaining unprocessed pixels. Note that this
% zmed was computed using a window of size Smax-by-Smax, which is
% the final value of k in the loop.
f(~alreadyProcessed) = zmed(~alreadyProcessed);




参考资源:

【1】自适应中值滤波算法在图像处理中的应用,刘 颖,陈谨女,长安大学电子与控制工程工程学院
【2】一种改进的自适应中值滤波方法,卫保国,西北工业大学电子信息学院,2008

版权声明:本文为EbowTang原创文章,后续可能继续更新本文。如果转载,请务必复制本文末尾的信息!

自适应中值滤波RAMF

一、回顾一下传统的中值滤波     中值滤波就是选择一定形式的窗口,使其在图像的各点上移动,用窗内像素灰度值的中值代替窗中心点处的像素灰度值。它对于消除孤立点和线段的干扰十分有用,能减弱或消除傅里叶空...

自适应中值滤波及MATLAB实现

自适应中值滤波器是以m*n的矩形窗口Sxy定义的滤波器区域内图像的统计特性为基础的,可以处理具有更大概率的脉冲噪声如椒盐噪声,在平滑非脉冲噪声时能保留细节。 其matlab实现如下,并与中值滤波作比较...

自适应中值滤波

自适应中值滤波的实现

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

自适应中值滤波用于超声图像降噪

自适应中值滤波原理: RAMF主要通过以下两步来处理图像。 1.首先确定最大的滤波半径,然后用一个合适的半径r对图像进行滤波。计算当前滤波半径像素灰度的Imin,Imax,Imed,然后判断Ime...

RAMF自适应中值滤波

clear all;  %清除所有变量 close all;  %关闭所有打开的文件 clc;  %清除命令行内容 img = mat2gray(rgb2gray(imread('lena....

自适应滤波器(Adaptive Filter)

======= Wikipedia的解释 ======= 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

图像处理自适应滤波

图像处理基础(2):自适应中值滤波器(基于OpenCV实现) 标签: opencv滤波器 2017-02-08 19:44 986人阅读 评论(0) 收藏 举报  分类: ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数字图像处理,自适应中值滤波的C++实现
举报原因:
原因补充:

(最多只允许输入30个字)