Poj1228 Grandpa's Estate

原创 2016年06月01日 20:40:29

给出了一些凸包上的点,问该凸包是否为稳定凸包。
稳定凸包即指在不删掉当前凸包上的点的情况下,无法通过加点来得到更大的凸包。这样的凸包每条边上除两端点外都一定还有点。
求出凸包顶点,判断凸包每条边上是否还有点即可。
既然那么多人都写Graham,那我就写写分治来愉悦一下吧。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<cmath>
using namespace std;
const int maxn = 1005;
#define EPS 1e-6
#define INF 1e9
struct point {
    double x,y;
    point(){}
    point(double _x,double _y):x(_x),y(_y){}
    point operator - (const point &a) {return point(x-a.x,y-a.y);}
    bool operator != (const point &a) {return x!=a.x || y!=a.y;}
    bool operator == (const point &a) {return x==a.x && y==a.y;}
};
double multi(point a,point b) {return a.x*b.y - a.y*b.x;}
double dis(point a,point b) {point c=a-b;return sqrt(1.0*c.x*c.x+1.0*c.y*c.y);}
bool cmp(point a,point b) {return a.x < b.x || (a.x==b.x && a.y < b.y);}
point P[maxn],hull[maxn];
int N,cnt=0;
double s[maxn];
void quickhull(int L,int R,point a,point b) {
    int x = L,i=L-1,j=R+1;
    for(int k = L; k <= R; k++) if( s[k]-s[x] > EPS || ( fabs(s[x]-s[k])<EPS && cmp(P[x],P[k]))) x=k;
    point y = P[x];
    for(int k = L; k <= R; k++) {
        s[++i] = multi(a-P[k],y-P[k]);
        if( s[i] > EPS) swap(P[i],P[k]); else i--;
    }
    for(int k = R; k >= L; k--) {
        s[--j] = multi(y-P[k],b-P[k]);
        if( s[j] > EPS) swap(P[j],P[k]); else j++;
    }
    if( L <= i ) quickhull(L,i,a,y);
    hull[++cnt] = y;
    if( j <= R ) quickhull(j,R,y,b);
}
bool judge(point a,point b,point k) {
    return fabs(multi(k-a,b-a)) < EPS;
}
int main() {
    int T;
    for(scanf("%d",&T);T;T--) {
        scanf("%d",&N);
        memset(s,0,sizeof s);
        P[0] = point(INF,INF); int x = 0;
        for(int i = 1; i <= N; i++) {
            scanf("%lf%lf",&P[i].x,&P[i].y);
            if( cmp(P[i],P[x]) ) x=i;
        }
        if(N< 5) {puts("NO"); continue;}
        swap(P[1],P[x]);

        cnt=0;
        hull[++cnt] = P[1];
        quickhull(2,N,P[1],P[1]);
        hull[++cnt] = P[1];
        bool fg = 1;
        for(int i = 2; i <= cnt; i++) {
            point a = hull[i-1];
            point b = hull[i];
            bool found=0;
            for(int j = 1; j <= N; j++){
                if(P[j] == a || P[j] == b) continue;
                if(judge(a,b,P[j])) {found=1;break;}
            }
            if( !found ){ fg = 0; break;}
        }
        puts( fg ? "YES" : "NO");

    }
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1228 Grandpa's Estate

题意:给定一些点,看能否确定唯一的一个凸包。 题解:只有保证凸包上的每条边都至少有三个点时,才能确定其唯一性。否则可以通过在两点构成的边的外围,增加点的来改变凸包。当所有点都在同一条直线上,或者给定...
  • Tsaid
  • Tsaid
  • 2011年12月16日 12:38
  • 903

poj 1228 Grandpa's Estate 凸包模板题

题意: 代码: #include #include #include #include #include #include #include using na...

POJ 1228 Grandpa's Estate (凸包唯一性判定 推荐)

POJ 1228 Grandpa's Estate (凸包唯一性判定 推荐)

poj1228-Grandpa's Estate 带边上节点的凸包(稳定凸包)问题

Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13649 ...

poj 1228 Grandpa's Estate[稳定凸包]

题目链接:点击打开链接  题目的意思很是简单,说给一个凸包

POJ 1228 Grandpa's Estate【稳定凸包判断】

ACM 计算几何 POJ 稳定凸包问题

poj 1228 Grandpa's Estate(凸包)

题意 : 给出凸多边形某些边上的部分点,问根据给出点能否唯一确定一个凸多边形。 思路: 1. 求出凸包的所有顶点( 即边的交点 )。 2. 枚举每一条边,对于一条边检测是否有3个点在其上。#in...

POJ 1228 Grandpa's Estate (求稳定凸包)

一个凸包丢了一些点,剩下的点能否表示原凸包? 先看一下什么情况下可以表示原凸包:现有的凸包每边都有3个以上的点。这样丢掉的点必定也在凸包上,否则现有的点不再凸包上,与已知不符。 做法就是根据所给点...

poj1228Grandpa's Estate

题目描述: DescriptionBeing the only living descendant of his grandfather, Kamran the Believer inherited...
  • fouzhe
  • fouzhe
  • 2016年06月07日 22:56
  • 321

POJ 1228 || Grandpa's Estate(凸包andrew算法

题目大意: 原来有一个凸包,可是凸包的顶点不全告诉你,给你一些凸包的点,问用这些点能不能确定唯一的凸包。   原谅我渣.. T T 看了好久不懂题目什么鬼。。默默的搜了一下题解。 说的是,如果...
  • FXXKI
  • FXXKI
  • 2015年05月05日 17:46
  • 585
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Poj1228 Grandpa's Estate
举报原因:
原因补充:

(最多只允许输入30个字)