概率论札记 - 2 - 用贝叶斯定理来讨论“医疗诊断的可靠性到底有多少”

原创 2015年07月09日 02:56:11

只有愚蠢的人才会相信眼睛看到的。
——安·兰德

故事要从一道贝叶斯定理的简单习题讲起。大意是艾滋病患病率为万分之一,误诊率为5%,患有艾滋病者被诊断出来的概率为99%,请问在这样的设定下如果你被诊断为艾滋病阳性,那么你患艾滋病的概率是多少,原题如下——

Problem Denoted blood is screened for AIDS. Suppose the test has 99% accuracy, and that one in ten thousand people in your age group are HIV positive. The test has a 5% false positive rating, as well. Suppose the test screens you as positive. What is the probability you have AIDS? Is it 99%?

Solution: E_1=”test positive”, E_2=”test negative”. A_1=”You have AIDS”, A_2=”You don’t have AIDS”. Now we know P(E1|A1)=99%, we need to find P(A1|E1). Since “one in ten thousand people in your age group are HIV positive”, P(A1)=1/10000.”5% false positive rating” means P(E1|A2)=5%. By Bayes’ Theorem

P(A1|E1)==P(E1|A1)P(A1)P(E1|A1)P(A1)+P(E1|A2)P(A2)99%×11000099%×110000+5%×9999100000.198%

Note: 是不是看起来结论很不可思议?细细想来就知道是合理的,原因在于5%的false positive rating实在是有点高。粗略估计一下,9999个非艾滋病患者里大约会有500个被查出来有艾滋病,而实际上10000个人里大约1个,这个人有99%可能性会被查出来,也就是说这501个人里大约只有一个真正的艾滋病患者。所以在这个故事里,就算被查出了艾滋阳性,患有艾滋病的几率依然只有千分之二左右。

讨论:联想到实际医疗中的误诊,逻辑上说,误诊可以简单分为两种——没病的看成有病了,或者有病的没有看出来。如果我们简单把前者定义为误诊,即定义误诊为“把没病的诊断成有病”,那么上面这道题目其实是在计算艾滋病诊断成阳性的可靠性,而题目中的误诊率是5%,这样大的误诊率居然将诊断的可靠性降到了一个极小的数字——千分之二。我们如果将模型简化,假设“有某病且能诊断出来”的概率固定为99%,那么很显然诊断的可靠性主要由两个数据决定——(1)误诊率:P(E1|A2)。(2)发病率:P(A1)
(1)让我们把P(E1|A2)调节得更小一点,比如万分之一,那么P(A1|E1)就会变成

P(A1|E1)==P(E1|A1)P(A1)P(E1|A1)P(A1)+P(E1|A2)P(A2)99%×11000099%×110000+110000×99991000049.8%

也就是说对于一个发病率为万分之一的病来说,要让诊断结果的可靠性超过百分之五十,它的误诊率需要低于万分之一才行。
(2) 如果一个病是常见病,如感冒,拉肚子等等,它的发病率比较高,那么这个时候我们看看诊断的可靠性是怎样的,比如在某流行性感冒发病季节。假设P(A1)=1/10, 误诊率为1%
P(A1|E1)==P(E1|A1)P(A1)P(E1|A1)P(A1)+P(E1|A2)P(A2)99%×11099%×110+5%×91069%

在这种情况下,诊断的可靠性才能勉强到七成。
直观地说,一种病越常见,且它的误诊率需要远低于发病率,这时的诊断结果才能足够靠谱。在最后七成可靠性的例子里,我采用的误诊率约为发病率的十分之一,实际情况可能会更低,所以通常情况下感冒发烧这种病的诊断可靠性是较强的。

在这个故事里,贝叶斯定理告诉我们一个略微有些“反常识”的道理:即使误诊率从数字上看已经很低了,诊断结果的可靠性也依旧无法保证足够高,诊断可靠性受到发病率的约束。

版权声明:本文为博主原创文章,如需转载请注明来源。

相关文章推荐

Notes on Probability Essentials - 1 - Axioms of Probability

“他说 / 你任何为人称道的美丽 / 不及他第一次遇见你。” ——《南山南》 本文用尽可能少的内容提供了建立概率测度(probability measure)所需要的公理和定义。 Abstr...

数学之路(3)-机器学习(3)-机器学习算法-贝叶斯定理(2)

我们运用朴素贝叶斯技术对文本完成分类,我们可以编写网络爬虫代码或手工搜索在相关新闻网中下面几类新闻,并下载形成文本文档库,文档资料目录如下: 将若干样本文档分为以下几类: C00000...

条件概率和贝叶斯定理

  • 2012-04-26 10:02
  • 109KB
  • 下载

贝叶斯定理实例

  • 2015-05-06 22:32
  • 29KB
  • 下载

数学之路(3)-机器学习(3)-机器学习算法-贝叶斯定理(4)

然后,我们接着计算词条的先验概率部分 #计算词条先验概率 print u"\n计算词条概率" ybgl={} for my_word in wordybcount.keys(): ybgl...

贝叶斯定理

概率分布及数据挖掘的基础:贝叶斯定理

贝叶斯定理

参考: http://blog.csdn.net/kesalin/article/details/40370325/ 简介 贝叶斯定理是18世纪英国数学家托马斯·贝叶斯(Thomas Baye...

Nani_xiao的机器学习与总结:Andrew Ng.机器学习(一) :贝叶斯定理

Andrew Ng 机器学习笔记与总结(一) :贝叶斯定理

贝叶斯定理

贝叶斯定理是有英国数学家贝叶斯提出的,用于描述liangge
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)