概率论札记 - 2 - 用贝叶斯定理来讨论“医疗诊断的可靠性到底有多少”

原创 2015年07月09日 02:56:11

只有愚蠢的人才会相信眼睛看到的。
——安·兰德

故事要从一道贝叶斯定理的简单习题讲起。大意是艾滋病患病率为万分之一,误诊率为5%,患有艾滋病者被诊断出来的概率为99%,请问在这样的设定下如果你被诊断为艾滋病阳性,那么你患艾滋病的概率是多少,原题如下——

Problem Denoted blood is screened for AIDS. Suppose the test has 99% accuracy, and that one in ten thousand people in your age group are HIV positive. The test has a 5% false positive rating, as well. Suppose the test screens you as positive. What is the probability you have AIDS? Is it 99%?

Solution: E_1=”test positive”, E_2=”test negative”. A_1=”You have AIDS”, A_2=”You don’t have AIDS”. Now we know P(E1|A1)=99%, we need to find P(A1|E1). Since “one in ten thousand people in your age group are HIV positive”, P(A1)=1/10000.”5% false positive rating” means P(E1|A2)=5%. By Bayes’ Theorem

P(A1|E1)==P(E1|A1)P(A1)P(E1|A1)P(A1)+P(E1|A2)P(A2)99%×11000099%×110000+5%×9999100000.198%

Note: 是不是看起来结论很不可思议?细细想来就知道是合理的,原因在于5%的false positive rating实在是有点高。粗略估计一下,9999个非艾滋病患者里大约会有500个被查出来有艾滋病,而实际上10000个人里大约1个,这个人有99%可能性会被查出来,也就是说这501个人里大约只有一个真正的艾滋病患者。所以在这个故事里,就算被查出了艾滋阳性,患有艾滋病的几率依然只有千分之二左右。

讨论:联想到实际医疗中的误诊,逻辑上说,误诊可以简单分为两种——没病的看成有病了,或者有病的没有看出来。如果我们简单把前者定义为误诊,即定义误诊为“把没病的诊断成有病”,那么上面这道题目其实是在计算艾滋病诊断成阳性的可靠性,而题目中的误诊率是5%,这样大的误诊率居然将诊断的可靠性降到了一个极小的数字——千分之二。我们如果将模型简化,假设“有某病且能诊断出来”的概率固定为99%,那么很显然诊断的可靠性主要由两个数据决定——(1)误诊率:P(E1|A2)。(2)发病率:P(A1)
(1)让我们把P(E1|A2)调节得更小一点,比如万分之一,那么P(A1|E1)就会变成

P(A1|E1)==P(E1|A1)P(A1)P(E1|A1)P(A1)+P(E1|A2)P(A2)99%×11000099%×110000+110000×99991000049.8%

也就是说对于一个发病率为万分之一的病来说,要让诊断结果的可靠性超过百分之五十,它的误诊率需要低于万分之一才行。
(2) 如果一个病是常见病,如感冒,拉肚子等等,它的发病率比较高,那么这个时候我们看看诊断的可靠性是怎样的,比如在某流行性感冒发病季节。假设P(A1)=1/10, 误诊率为1%
P(A1|E1)==P(E1|A1)P(A1)P(E1|A1)P(A1)+P(E1|A2)P(A2)99%×11099%×110+5%×91069%

在这种情况下,诊断的可靠性才能勉强到七成。
直观地说,一种病越常见,且它的误诊率需要远低于发病率,这时的诊断结果才能足够靠谱。在最后七成可靠性的例子里,我采用的误诊率约为发病率的十分之一,实际情况可能会更低,所以通常情况下感冒发烧这种病的诊断可靠性是较强的。

在这个故事里,贝叶斯定理告诉我们一个略微有些“反常识”的道理:即使误诊率从数字上看已经很低了,诊断结果的可靠性也依旧无法保证足够高,诊断可靠性受到发病率的约束。

版权声明:本文为博主原创文章,如需转载请注明来源。

AI与医学辅助诊断

人工智能一词越来越频繁的出现在日常生活中。一种事物的时髦,必然有其背后的原因。而对于这样一个大的话题,从整体上来叙述总显得有些不接地气。作为跟AI沾过一些边的博主将以自己接触的方面来发表一点看法。 首...
  • Robin__Chou
  • Robin__Chou
  • 2017年07月22日 22:23
  • 3483

详解:智能医学影像分析的前沿与挑战

[转]  http://www.leiphone.com/news/201701/b7msIh0xvsuBliIr.html 导语:本文整理自雅森科技高级算法研究员杨士霆,在雷锋网硬...
  • xiangz_csdn
  • xiangz_csdn
  • 2017年01月23日 10:53
  • 4341

人工智能-专家系统

人工智能-医疗专家系统 专业:计算机科学与技术 班级:计科1401 姓名:李姗妮 学号:201408010103   目录 摘要... 2 关键词... 2 正文... 2 ...
  • HE_2014_08010103_
  • HE_2014_08010103_
  • 2015年03月14日 22:52
  • 567

深度学习在医疗中的应用前景分析

本文简述了深度学习的发展现状,总结了深度学习在医疗领域成功应用的领域,并预测以限制性波尔兹曼机(RBM)为基础的深度信念网络(DBN)在医学诊断中的应用,由于可以促近近期医改中的分级诊疗的发展,将拥有...
  • Yt7589
  • Yt7589
  • 2016年07月25日 11:55
  • 12321

医疗行业专业术语知识

医疗行业中英文对照表 医疗行业专业名词解释 医疗行业专业术语普及
  • zhouyongku
  • zhouyongku
  • 2016年10月20日 00:37
  • 3827

医疗机器学习

随着大数据的深入应用,机器学习已经进入医疗领域。卡耐基梅隆大学(Carnegie Mellon University,CMU)计算机科学学院教授邢波(Eric Xing)正在主持CMU的一个机器学习和...
  • starzhou
  • starzhou
  • 2015年12月31日 20:32
  • 2748

医疗人工智能发展趋势及机遇

从1956年的达特矛斯会议提出“人工智能”的概念,到AlphaGo击败围棋世界冠军,人工智能的发展不过仅仅半个世纪的时间,期间都曾因遇到瓶颈而停滞不前。而如今,人工智能已经跨过了元年,计算平台、海量数...
  • sfM06sqVW55DFt1
  • sfM06sqVW55DFt1
  • 2017年12月11日 00:00
  • 132

吴恩达团队展示全新医疗影像识别技术:肺炎诊断准确率超过人类医生

机器学习在医疗领域的应用一直是 AI 的重要发展方向,深度学习著名学者吴恩达和他在斯坦福大学的团队一直在这一方面做着努力。近日,该团队提交的一篇新论文提出了名为 CheXNet 的新技术。研究人员在论...
  • Uwr44UOuQcNsUQb60zk2
  • Uwr44UOuQcNsUQb60zk2
  • 2017年11月17日 06:43
  • 166

用LSTM进行医疗诊断

用LSTM进行医疗诊断
  • shine88818
  • shine88818
  • 2017年04月24日 22:01
  • 673

PageRank简介,跟不懂的同学们一起分享一下

**一、什么是pagerank**  PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google...
  • zly_ir
  • zly_ir
  • 2016年06月20日 16:35
  • 486
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:概率论札记 - 2 - 用贝叶斯定理来讨论“医疗诊断的可靠性到底有多少”
举报原因:
原因补充:

(最多只允许输入30个字)