【笔记篇】不普及向——莫比乌斯反演学习笔记 && 栗题HAOI2011 Problem B

Part0 广告(当然没有广告费)

P.S. 这篇文章是边学着边用Typora写的…学完了题A了blog也就呼之欲出了~有latex化式子也非常方便…非常建议喜欢Markdown的dalao们下载个~

Part1 莫比乌斯函数&&莫比乌斯反演

最近一直在做数论不是OvO
然后就一直有莫比乌斯反演这个坑没有填OvO
其实PoPoQQQ的课件已经看过不少遍了OvO
但是数论这东西不动手化式子还是不行的OvO
或许是我菜?

没错,莫比乌斯就是发现那个奇怪的扭曲的环的男人…

对于两个函数 F(x) f(x) , 如果它们满足

F(n)=d|nf(d)

那么就有
f(n)=d|nμ(d)F(nd)=n|dμ(dn)F(d)

这个 μ(x) 指的是莫比乌斯函数…是个积性函数, 可以线筛的那种…
线筛求莫比乌斯函数的代码:

void euler(int n){
    mu[1]=1; notp[1]=1;
    for(int i=2;i<=n;++i){
        if(!notp[i]) prime[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*prime[j]<=n;++j){
            notp[i*prime[j]]=1;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }else mu[i*prime[j]]=-mu[i];
        }
    }
}

PoPoQQQ的课件其实讲的已经非常好了, 然后再自己动手化化式子体会一下就比较好了~

Part2 HAOI2011 Problem B

题目大意: 明明题目已经写的很清楚了不是OvO
我们就先容斥一波, 把每个询问拆成四个…

Qn,m 表示对于满足 1xn,1ym gcd(x,y)=k 的数对 (x,y) 的个数.
这样的话显然每次询问的答案就是 Qb,dQa1,dQb,c1+Qa1,c1
那么如何求 Qn,m 呢?(后来发现其实这就是bzoj1101不过是道权限题..
我们可以看出这个答案和 1xnk,1ymk ,且 gcd(x,y)=1 (x,y) 个数是一样的..
这样求的做法很显然单次询问就是 O(nm) 的,不是很懂拿什么过..所以需要进行优化.

这里就用到了莫比乌斯反演
不妨令 f(d) 1xn,1ym gcd(x,y)=d (x,y) 个数, F(d) 1xn,1ym d|gcd(x,y) (x,y) (x,y) 个数..
这里不难看出 F(x) f(x) 是满足

F(n)=d|nf(d)

这个条件的,而 F(x) 是比较好算的, 因为容易观察出 F(x)=nxmx
所以就可以直接莫比乌斯反演…
f(x)=x|dμ(dx)F(d)=x|dμ(dx)ndmd

这样的话每次询问我们枚举 d (k的倍数)就做完了…时间复杂度 O(n) ..好像还是过不了OvO
所以我们还要优化…显然现在能优化的地方就是预处理了…(多组询问的常见套路
那么预处理什么呢?
我们发现 nd 这个东西最多只有 2n 个取值(可证明的), 所以 ndmd 这个东西就有不超过 2(n+m) 个取值咯~
就可以预处理了..然后维护一个前缀和做就好了…
( 据说”枚举除法的取值这种方法在莫比乌斯反演的应用当中非常的常用”)

枚举的方法就是

long long calc(int n,int m){
    n/=k; m/=k;
    int last=0; long long ans=0;
    if(n>m) swap(n,m);
    for(int i=1;i<=n;i=last+1){
        last=min(n/(n/i),m/(m/i));
        ans+=1LL*(n/i)*(m/i)*(sum[last]-sum[i-1]);
    }
    return ans;
}

对就是这样咯~

代码(明明就是把上面两个函数拼起来←_←

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=50000;
int prime[N>>2],mu[N],sum[N],tot;
bool notp[N];
inline int gn(int a=0,char c=0){
    for(;c<'0'||c>'9';c=getchar());
    for(;c>47&&c<58;c=getchar())a=a*10+c-48;return a;
}
void euler(int n){
    sum[1]=mu[1]=1; notp[1]=1;
    for(int i=2;i<=n;++i){
        if(!notp[i]) prime[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*prime[j]<=n;++j){
            notp[i*prime[j]]=1;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }else mu[i*prime[j]]=-mu[i];
        }
        sum[i]=sum[i-1]+mu[i];
    }
}
int a,b,c,d,k;
inline LL calc(int n,int m){
    int last=0; LL ans=0; n/=k; m/=k;
    if(n>m) swap(n,m);
    for(int i=1;i<=n;i=last+1){
        last=min(n/(n/i),m/(m/i));
        ans+=1LL*(n/i)*(m/i)*(sum[last]-sum[i-1]);
    }
    return ans;
}
int main(){
    int T=gn(); euler(50000);
    while(T--){
        a=gn(),b=gn(),c=gn(),d=gn(),k=gn();
        printf("%lld\n",calc(b,d)-calc(a-1,d)-calc(b,c-1)+calc(a-1,c-1));
    }
}

注意事项?
就一条, 关于long long的问题..
5W相乘, 不开long long 只有30pts
但这个题卡常数.. 全开long long的话会压线5个点 TLE2个点什么的←_←
所以还是能不开long long就不要开long long了…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值