# 1007. Maximum Subsequence Sum (25)

400 ms

65536 kB

16000 B

Standard

CHEN, Yue

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:
10 1 4


#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int maxn = 10000, INF = 0x7fffffff;
int a[maxn + 10];

int main()
{
int K;
cin >> K;
bool check = false;
for (int i = 0; i < K; i++) {
scanf("%d", &a[i]);
if (a[i] >= 0) check = true;
}
if (!check) {
printf("0 %d %d\n", a[0], a[K - 1]);
return 0;
}
int s = a[0], e = a[0], ts = a[0];
int tsum = 0, maxx = -INF;
bool flag = false;
for (int i = 0; i < K; i++) {
//flag == true时说明上一次迭代的时候tsum < 0了，要重新计算最大子列和s
if (flag) {
ts = a[i]; //计算新的子列和，取新的左端点
flag = false; //注意解除标记
}
tsum += a[i];
if (maxx < tsum) {
s = ts; //更新最终的左端点s
e = a[i]; //更新右端点e
maxx = tsum;
}
if (tsum < 0) { //debug 不要放到if(maxx < tsum)上面
flag = true;
tsum = 0;
}
}
printf("%d %d %d\n", maxx, s, e);
return 0;
}

• 本文已收录于以下专栏：

## 1007. Maximum Subsequence Sum (25)-PAT甲级真题（动态规划dp）

1007. Maximum Subsequence Sum (25) Given a sequence of K integers { N1, N2, …, NK }. A continuo...
• liuchuo
• 2016年08月07日 20:13
• 514

## 【PAT】1007. Maximum Subsequence Sum (25)

• realxuejin
• 2013年08月23日 16:11
• 1441

## PAT TEST甲级1007. Maximum Subsequence Sum (25)

• happyerin123
• 2017年01月22日 14:30
• 619

## PAT 1007 Maximum Subsequence Sum（最长子段和）

PAT 1007 Maximum Subsequence Sum（最长子段和）
• Dacc123
• 2016年05月26日 19:37
• 534

## 1007. Maximum Subsequence Sum (25) -- 动态规划

1007. Maximum Subsequence Sum (25)题目地址Given a sequence of K integers { N1, N2, …, NK }. A continuous...
• qq_26437925
• 2015年08月13日 21:11
• 695

## 1007.Maximum Subsequence Sum (25)

1007.Maximum Subsequence Sum (25)pat-al-10072017-02-04 最大子段和，动态规划典型题 为什么maxSum必须设置为-1，不然有个测试点过不了，想不通...
• ymdq1113
• 2017年02月04日 23:43
• 73

## PAT (Advanced Level) Practise - 1007. Maximum Subsequence Sum (25)

1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制...
• Mr_Treeeee
• 2017年11月04日 22:43
• 65

## PAT (Advanced Level) Practise 1007. Maximum Subsequence Sum (25)

1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 ...
• wyxdexyq
• 2014年10月22日 20:38
• 498

## 1007. Maximum Subsequence Sum (25)——PAT (Advanced Level) Practise

• xianyun2009
• 2014年09月24日 09:11
• 700

## PAT(Advanced level) 1007. Maximum Subsequence Sum*

• zhihua555
• 2014年05月24日 16:39
• 271

举报原因： 您举报文章：pat PAT (Advanced Level) Practise 1007. Maximum Subsequence Sum (25) 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)