pat PAT (Advanced Level) Practise 1007. Maximum Subsequence Sum (25)

原创 2016年05月31日 19:32:19

1007. Maximum Subsequence Sum (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21
Sample Output:
10 1 4


在线处理,用一个ts保存临时的最大子列和区间的左端点,s为确定的最终左端点,e为右端点


#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int maxn = 10000, INF = 0x7fffffff;
int a[maxn + 10];

int main()
{
	int K;
	cin >> K;
	bool check = false;
	for (int i = 0; i < K; i++) {
		scanf("%d", &a[i]);
		if (a[i] >= 0) check = true;
	}
	if (!check) {
		printf("0 %d %d\n", a[0], a[K - 1]);
		return 0;
	}
	int s = a[0], e = a[0], ts = a[0];
	int tsum = 0, maxx = -INF;
	bool flag = false;
	for (int i = 0; i < K; i++) {
		//flag == true时说明上一次迭代的时候tsum < 0了,要重新计算最大子列和s
		if (flag) {
			ts = a[i]; //计算新的子列和,取新的左端点
			flag = false; //注意解除标记
		}
		tsum += a[i];
		if (maxx < tsum) {
			s = ts; //更新最终的左端点s
			e = a[i]; //更新右端点e
			maxx = tsum;
		}
		if (tsum < 0) { //debug 不要放到if(maxx < tsum)上面
			flag = true;
			tsum = 0;
		}
	}
	printf("%d %d %d\n", maxx, s, e);
	return 0;
}



版权声明:本文为博主原创文章

相关文章推荐

1007. Maximum Subsequence Sum (25)——PAT (Advanced Level) Practise

题目信息: 1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 32000 kB ...

PAT (Advanced Level) Practise 1007 Maximum Subsequence Sum (25)

1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 ...

【PAT Advanced Level】1007. Maximum Subsequence Sum (25)

这题理解起来有点烦,如果用O(n^2)也可以做,当然是有O(n)的算法的,利用类似于贪心算法,从前往后遍历,每次都加上当前元素,如果小于0,则说明之前所有元素(包括当前元素)的最大子序列和小于0,我们...
  • gzxcyy
  • gzxcyy
  • 2013年10月14日 14:23
  • 828

PAT (Advanced Level) 1007. Maximum Subsequence Sum (25) 最大连续子数组,一次遍历,stack辅助

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

浙大 PAT Advanced level 1007. Maximum Subsequence Sum

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

Pat(Advanced Level)Practice--1007(Maximum Subsequence Sum)

Pat1007代码 题目描述: Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence...

1007. Maximum Subsequence Sum (25) PAT+动态规划

注意:dp 题目:1007. Maximum Subsequence Sum (25) Given a sequence of K integers { N1, N2, ..., NK }. A...

PAT1007. Maximum Subsequence Sum (25)

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
  • wtrnash
  • wtrnash
  • 2017年04月02日 16:13
  • 78

PAT 1007. Maximum Subsequence Sum (25)

1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 ...

PAT-1007. Maximum Subsequence Sum (25)

Given a sequence of K integers { N1, N2, …, NK }. A continuous subsequence is defined to be { Ni, Ni...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:pat PAT (Advanced Level) Practise 1007. Maximum Subsequence Sum (25)
举报原因:
原因补充:

(最多只允许输入30个字)