Poj 1734 Sightseeing trip floyd最小环

原创 2015年11月18日 21:21:23

Sightseeing trip
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 5698 Accepted: 2203 Special Judge
Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, …, y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,…,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+…+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.
Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).
Output

There is only one line in output. It contains either a string ‘No solution.’ in case there isn’t any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.
Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
Sample Output

1 3 5 2

题意:给n个点,m条双向边,找出最小环。
找出最小环可看成i->j的路径可由i->k->j->i这条更短的路径更新而来,可以推出一个路径长度表达式dis[i][j]+Map[i][k]+Map[k][j]。因为是最小环,不必考虑方向,即不考虑谁指向谁,只要是个环就行了(之前一直在这里纠结,真是无药可救),即可以采用floyd来跑找出最小环。因为floyd是个更新最短路的过程,更新过后环路径可能就不存在了,所以必须在更新前找出最小环,所以查找过程写在更新最短路之前。定义一个ans=inf,由如果ans>dis[i][j]+Map[i][k]+Map[k][j],则更新ans,如果不能更新就直接输出”No solution.”。能更新则用findpath()来储存路径。还有在更新最短路时,最短路径由i->j变为i->k->j,所以path[i][j]要更新为path[k][j]。

#include"stdio.h"
#include"iostream"
#include"algorithm"
#include"string.h"
#define maxn 510
#define inf 0xfffffff

using namespace std;

int n,m;
int num;
int dis[maxn][maxn];  ///i->j的最短路
int Map[maxn][maxn];  ///
int path[maxn][maxn];  ///用更新最短时储存路径和更新road用的
int road[maxn];  ///路径

void init()   ///初始化
{
    for(int i = 0;i < maxn;i++)
    {
        road[i] = inf;
        for(int j = 0;j < maxn;j++)
        {
            dis[i][j] = Map[i][j] = inf;
            path[i][j] = i;
        }
    }
}

void findpath(int i,int j,int k)    ///储存路径,大概为j->i->k->(j,输出环不用输出起点)
{
    for(num = 0;i-j;j = path[i][j])
        road[num++] = j;
    road[num++] = i;
    road[num++] = k;
}
int Floyed()
{
    int ans = inf;
    for(int k = 1;k <= n;k++)
    {
        for(int i = 1;i < k;i++)      ///k点不属于i->j的最短路一条,所以i<k
            for(int j = i+1;j < k;j++)
            {
                if(ans > dis[i][j]+Map[i][k]+Map[k][j])   ///更新最小环的值
                {
                    ans = dis[i][j]+Map[i][k]+Map[k][j];
                    findpath(i,j,k);
                }
            }
        for(int i = 1;i <= n;i++)   ///更新最短路
            for(int j = 1;j <= n;j++)
                if(dis[i][j] > dis[i][k]+dis[k][j])
                {
                    dis[i][j] = dis[i][k]+dis[k][j];
                    path[i][j] = path[k][j];
                }
    }
    return ans;
}
int main(void)
{
    while(scanf("%d%d",&n,&m) !=EOF)
    {
        init();
        for(int i = 1;i <= m;i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            if(Map[a][b] > c)
            {
                Map[a][b] = dis[a][b] = Map[b][a] = dis[b][a] = c;   ///双向边
            }
        }
        int ans = Floyed();
        if(ans == inf)
            printf("No solution.\n");
        else
        {
            for(int i = 0;i < num;i++)   ///输出路径
            {
                if(i < num-1)
                    printf("%d ",road[i]);
                else
                    printf("%d",road[i]);
            }
            printf("\n");
        }
    }
    return 0;
}
版权声明:excuse me?

相关文章推荐

POJ-1734 Sightseeing trip (无向图最小环[Floyd])

依旧按照无向图最小环的floyd算法求,由于要输出路径,所以更新最短路时也要更新路径 开始只用了pre数组输出答案,一直WA,发现后来的最短路会更改pre数组,所以每次更新最小环时也要更新最小环的路径

poj1734Sightseeing trip(floyd求最小环)

这道题目是floyd求最小环,意思是这样的,有那么多的环,找到一个权的和最小的,然后把序号输出来,这个的话我上网上学习了用floyd求最小环,就是u到k,到v,再到u,v到u这段不经过k,那么就让这个...

POJ 1734 Sightseeing trip Floyd求最小环

http://poj.org/problem?id=1734 题意:给定一个N个点的无向图,求其中的最小的环。 思路:朴素的求法是:一次枚举每一条边(假设为e(i,j)),删除它,并求利用剩下结点...

POJ 1734 Sightseeing trip Floyd求最小环

题目大意:给一张无向图,求这个图中的最小环并输出路径。 思路:在每次正常的Floyd更新最短路之前,先判断是否有最小环,然后再进行正常的floyd更新。如果在k更新最短路之前i和j就已经有点...

POJ 1734 Sightseeing trip【floyd求最小环+记录路径】

Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submiss...

poj 1734 Sightseeing trip(floyd求最小环并输出方案)

题目链接 Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions...

【POJ】1734 Sightseeing trip floyd最小环

传送门:【POJ】1734 Sightseeing trip

poj 1734 Sightseeing trip 扩展floyd求最小环

题意:

【Floyd求无向图的最小环】PKU-1734-Sightseeing trip

Floyd算法就是通过n次枚举中间点k来使i到j的距离松弛为最短,而本题就是在枚举k的时候找环,具体思路见代码! 题目 #include #include #include using nam...

POJ 1734 Sightseeing trip 无向图的最小环

//============================================================================ // Name : POJ1...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)