# Poj 1734 Sightseeing trip floyd最小环

127人阅读 评论(0)

Sightseeing trip
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 5698 Accepted: 2203 Special Judge
Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, …, y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,…,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+…+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.
Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).
Output

There is only one line in output. It contains either a string ‘No solution.’ in case there isn’t any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.
Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
Sample Output

1 3 5 2

#include"stdio.h"
#include"iostream"
#include"algorithm"
#include"string.h"
#define maxn 510
#define inf 0xfffffff

using namespace std;

int n,m;
int num;
int dis[maxn][maxn];  ///i->j的最短路
int Map[maxn][maxn];  ///图

void init()   ///初始化
{
for(int i = 0;i < maxn;i++)
{
for(int j = 0;j < maxn;j++)
{
dis[i][j] = Map[i][j] = inf;
path[i][j] = i;
}
}
}

void findpath(int i,int j,int k)    ///储存路径，大概为j->i->k->(j,输出环不用输出起点)
{
for(num = 0;i-j;j = path[i][j])
}
int Floyed()
{
int ans = inf;
for(int k = 1;k <= n;k++)
{
for(int i = 1;i < k;i++)      ///k点不属于i->j的最短路一条，所以i<k
for(int j = i+1;j < k;j++)
{
if(ans > dis[i][j]+Map[i][k]+Map[k][j])   ///更新最小环的值
{
ans = dis[i][j]+Map[i][k]+Map[k][j];
findpath(i,j,k);
}
}
for(int i = 1;i <= n;i++)   ///更新最短路
for(int j = 1;j <= n;j++)
if(dis[i][j] > dis[i][k]+dis[k][j])
{
dis[i][j] = dis[i][k]+dis[k][j];
path[i][j] = path[k][j];
}
}
return ans;
}
int main(void)
{
while(scanf("%d%d",&n,&m) !=EOF)
{
init();
for(int i = 1;i <= m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(Map[a][b] > c)
{
Map[a][b] = dis[a][b] = Map[b][a] = dis[b][a] = c;   ///双向边
}
}
int ans = Floyed();
if(ans == inf)
printf("No solution.\n");
else
{
for(int i = 0;i < num;i++)   ///输出路径
{
if(i < num-1)
else
}
printf("\n");
}
}
return 0;
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：18233次
• 积分：1136
• 等级：
• 排名：千里之外
• 原创：99篇
• 转载：1篇
• 译文：0篇
• 评论：3条
评论排行
最新评论