LCA 的两种算法

5 篇文章 0 订阅
4 篇文章 0 订阅

最近公共祖先的两种算法


Tarjan算法

Tarjan是LCA的一种离线算法,所谓离线指在执行算法前输入数据已知。

Tarjan的LCA算法基于深度优先搜索和并查集,而且并查集的合并操作明确要求了合并的的方向。

  • 深度优先搜索会首先对当前节点的所有子树进行操作后回溯,假设子节点回溯之后其其对应的查询操作已经处理结束。我们就将它合并到当前节点的下方
  • 合并完当前节点的所有子树之后,处理与当前节点有关的特定询问操作。即询问中含有当前节点,且另一个节点也已经深搜到
  • 那么这一次询问的结果便是另一个节点所在集合的代表元素

倍增算法

倍增同样也基于深度优先搜索。

首先我们需要预处理出每个节点 u 的深度,和其 2 ^ i 的祖先 p[u][i]

预处理方法如下(使用链式前向星存图)

void dfs(int x) {
    p[x][0] = fa[x]; // 其 2 ^ 0 个祖先是其父节点

    for (int i = 1; p[x][i-1]; i++)
        p[x][i] = p[p[x][i - 1]][i - 1]; // x 个节点的第 2 ^ i 个祖先既是 x 的第 2 ^ (i - 1) 个祖先的第 2 ^ (i - 1) 个祖先,可以动手推推这个式子。这也解释了 for 循环中使用 p[x][i-1] 作为判断表达式的原因

    int to;

    for (int i = head[x]; i; i = edges[i].next) { // 枚举 x 节点能够到达的所有节点
        to = edges[i].to;

        if (to != fa[x]) { //判断是否是当前节点的父节点
            fa[to] = x; // 设置 x 的子节点的父节点为 x
            deep[to] = deep[x] + 1; // 设置子节点的深度为 x 的深度 +1
            dfs(to); // 深搜子节点
        }
    }
}

需要通过调整使两个节点的深度位于同一层,然后将这两个节点同时向上查找指定距离的祖先

int lca(int a,int b){
    if(deep[a] > deep[b])
        swap(a, b); // 始终满足 b 为深度最大的节点

    int f = deep[b] - deep[a]; // 计算两个节点的高度差
    for (int i = 0; (1 << i) <= f; i++)
        if((1 << i) & f)
            b = p[b][i]; // 将 b 追溯到与 a 位于同一深度的祖先

    if (a != b) {
        for (int i = 20; i >= 0; i--) // 从最深的祖先开始判断两个节点的祖先是否相同
            if (p[a][i] != p[b][i]) {
                a = p[a][i];
                b = p[b][i];
            }

        a = p[a][0]; // 此时 a 和 b 的父节点既是其公共祖先
    }

    return a;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LCA(最近公共祖先)是指在一棵树中,找到两个节点的最近的共同祖先节点。而Tarjan算法是一种用于求解强连通分量的算法,通常应用于有向图中。它基于深度优先搜索(DFS)的思想,通过遍历图中的节点来构建强连通分量。Tarjan算法也可以用于求解LCA问题,在有向无环图(DAG)中。 具体来说,在使用Tarjan算法求解LCA时,我们需要进行两次DFS遍历。首先,我们从根节点开始,遍历每个节点,并记录每个节点的深度(即从根节点到该节点的路径长度)。然后,我们再进行一次DFS遍历,但这次我们在遍历的过程中,同时进行LCA的查找。对于每个查询,我们将两个待查询节点放入一个查询列表中,并在遍历过程中记录每个节点的祖先节点。 在遍历的过程中,我们会遇到以下几种情况: 1. 如果当前节点已被访问过,说明已经找到了该节点的祖先节点,我们可以更新该节点及其所有后代节点的祖先节点。 2. 如果当前节点未被访问过,我们将其标记为已访问,并将其加入到查询列表中。 3. 如果当前节点有子节点,我们继续递归遍历子节点。 最终,对于每个查询,我们可以通过查询列表中的两个节点的最近公共祖先节点来求解LCA。 需要注意的是,Tarjan算法的时间复杂度为O(V+E),其中V为节点数,E为边数。因此,对于大规模的树结构,Tarjan算法是一种高效的求解LCA问题的方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值