关闭

数位DP初探(未完成

112人阅读 评论(0) 收藏 举报
分类:

数位DP常常用于对数字的统计题目,其状态设计往往与数字和位数有关。

这种题不是很好想啊。。。还要多加练习。

T1:BZOJ1026--Windy数     原题链接

结题报告:设f[i][j]表示共i位,首位为j的所有windy数目,容易得出方程:f[i][j]+=f[i-1][k] (abs(j-k)>=2)

其实我觉得难点在于如何统计答案。

因为原题要求一段区间的数量,直接求显然不好办,我们可以选择求[1,r] 的 - [1,r] 的。

于是我们需要写一个函数求出区间1-x的windy数个数。

我们先求出所有位数小于x的答案数量。

再求出所有位数等于x且最高位小于x的最高位的答案数量。

在从高位向低位统计,类似上一个的方法,每次只统计到该位<x的这一位为止,意义就是把前几位全部填上x的数字,然后求尚未填充的几位中有多少合法方案,注意这个题如果在填充高位过程中发现x的相邻两位只差小于2,那么直接跳出,不再统计低位。

注意这样统计下去,x本身是不会被计算的。也就是说,这个函数统计的是[1,x)的,因此,最终答案应该是 [1,r+1) - [1,l)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 20;
ll f[maxn][maxn];
ll a,b;
void init()
{
    for(int i=0;i<=9;i++) f[1][i]=1;
    for(int i=2;i<=10;i++)
       for(int j=0;j<=9;j++)
          for(int k=0;k<=9;k++)
             if(abs(j-k)>=2)
                f[i][j]+=f[i-1][k];
}
ll calc(ll x)
{
    int num[maxn]={0};
    int len=0;
    ll ans=0;
    while(x)
    {
        len++;
        num[len]=x%10;
        x/=10;
    }
    for(int i=1;i<len;i++)
       for(int j=1;j<=9;j++) 
          ans+=f[i][j];
    for(int i=1;i<num[len];i++) ans+=f[len][i];
    for(int i=len-1;i>0;i--)
    {
       for(int j=0;j<num[i];j++)
          if(abs(j-num[i+1])>=2) 
             ans+=f[i][j];
       if(abs(num[i]-num[i+1])<2) break;
    }
    return ans;
}
int main()
{
    scanf("%lld%lld",&a,&b);
    init();
    printf("%lld",calc(b+1)-calc(a));
    return 0;
}
T2:BZOJ1833--数字统计   原题链接
类似上题,f[i][j][k]表示i位首位j数字k的出现次数,f[i][j][k]+=f[i-1][p][k] (p∈[0,9]) && f[i][j][j]+=10^(i-1)

然后乱搞,细节很多,直接上代码。

#include<bits/stdc++.h>
#define debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
const int maxn = 20;
typedef unsigned long long ll;
ll f[maxn][maxn][maxn];
ll po[maxn];
ll l,r;
void init()
{
	po[0]=1;
	for(int i=1;i<=12;i++) po[i]=po[i-1]*10;
	for(int i=0;i<=9;i++) f[1][i][i]=1;
	for(int i=2;i<=12;i++)
	   for(int j=0;j<=9;j++)  // first
	   {
	      for(int k=0;k<=9;k++) // dight
	         for(int p=0;p<=9;p++)
	            f[i][j][k]+=f[i-1][p][k];
	     f[i][j][j]+=po[i-1];
	   }
}
ll calc(ll x,int tar)
{
	int len=0;
	int num[20]={0};
	ll sum[20]={0};
	ll ans=0;
	while(x)
	{
		len++;
		sum[len]=sum[len-1];
		if(x%10==tar) sum[len]++;
		num[len]=x%10;
		x=x/10;
	}
	for(int i=1;i<len;i++)
	   for(int j=1;j<=9;j++)
	      ans+=f[i][j][tar];
	for(int i=1;i<num[len];i++) ans+=f[len][i][tar];
	for(int i=len-1;i>=1;i--)
	{
	   for(int j=0;j<num[i];j++)
	      ans+=(f[i][j][tar]);
	   ans+=((sum[len]-sum[i])*po[i-1]*num[i]);
	}
	ans+=sum[len];
	return ans;
}
int main()
{
	scanf("%llu%llu",&l,&r);
	init();
	for(int i=0;i<=9;i++) printf("%llu ",calc(r,i)-calc(l-1,i));
	return 0;
}


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8381次
    • 积分:656
    • 等级:
    • 排名:千里之外
    • 原创:54篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论