关闭
当前搜索:

auto-sklearn案例解析二

度量函数-metricsauto-sklearn的度量函数是对sklearn度量函数的封装,我们即可以使用autosklearn已经封装好的metrics函数,也可以使用autosklearn的metrics函数封装器make_scorer函数封装我们自己的么metrics函数使用autosklearn已经封装好的metrics函数如果仅仅是获取的话,最简易的一种方式是直接去找源代码.你可以直接输入...
阅读(49) 评论(0)

auto-sklearn案例解析一

简单的使用 >>> import autosklearn.classification >>> cls = autosklearn.classification.AutoSklearnClassifier() >>> cls.fit(X_train, y_train) >>> predictions = cls.predict(X_test) 该例子来自于官网首页....
阅读(53) 评论(0)

auto-sklearn官网首页

auto-sklearn是什么?auto-sklearn是一个自动化机器学习的工具包,其基于sklearn编写. >>> import autosklearn.classification >>> cls = autosklearn.classification.AutoSklearnClassifier() >>> cls.fit(X_train, y_train)...
阅读(54) 评论(0)

auto-sklearn手册

手册本手册从几个方面说明了如何使用auto-sklearn。并且 尽可能引用的例子来解释某些配置。官网首页.官网中文翻译例子auto-sklearn 下面的例子演示几个 方面的用法,他们都位于github: Holdout 交叉验证 并行计算 按照时序使用 回归 连续和分类数据 使用自定义指标 时间和内存限制auto-sklearn 的一个重要功能时限制内存与时间的使用。特别是对于大型数据集,算法可...
阅读(91) 评论(0)

理解朴素贝叶斯

前言在对我的数据科学与人工智能小组的新人进行小规模授课时讲课内容整理,有改动和删减.这可能是目前网络上最全面也最简单易懂的有关朴素贝叶斯的文章有关贝叶斯的一些闲谈无论是在生活中还是我们的科学理论中,经常会估计概率.比如,我们计算一下明天下雨的概率,或者中彩票的概率,或者其他概率.概率就是可能性. 但是在人工智能领域关于概率的问题却产生了两个不同的流派,那就是贝叶斯派和频率学派.频率学派认为万物发展...
阅读(357) 评论(0)

机器学习数据集

前言数据集算是比较重要的学习资料了吧,在这里汇总一些好用的数据集以便使用, 关于一些内容可以参考一下知乎的提问UCI常用数据集UCI 一个不错的数据集下载网站 此处介绍几个点击;想比较高的数据集,后面有下载和存储的代码以及有关问题的说明.使用方式点击官方网站,你可以看到以下内容 可以看到右边有两个排行榜,最右边的是历史点击率的排行榜,位于该榜左边的也就是网页中间的是最新捐赠...
阅读(188) 评论(0)

Python中单线程、多线程与多进程的效率对比实验

Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。 对比实验 资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密...
阅读(67) 评论(0)

Google提出的新型激活函数:Swish

简介Swish是Google在10月16号提出的一种新型激活函数,其原始公式为:f(x)=x * sigmod(x),变形Swish-B激活函数的公式则为f(x)=x * sigmod(b * x),其拥有不饱和,光滑,非单调性的特征,而Google在论文中的多项测试表明Swish以及Swish-B激活函数的性能即佳,在不同的数据集上都表现出了要优于当前最佳激活函数的性能.论文地址:这里写链接内容详...
阅读(234) 评论(0)

Rosonblatt线性感知器

前叙 读前简介 机器学习的流派很多,现在比较流行的便是联结学派,其计算的重点在于权重更新,而其它学派比如贝叶斯学派,基于统计学,进化学派则注重结构学习. 本篇博客以线性感知器为基础,将会对神经网络与一些机器学习算法进行介绍,如果你只想简单的了解,那么可以浏览一遍即可,当然你也可以花费些时间读这篇文章,那么你也可以受益许多. 神经网络与联结学派 神经网络就是联结学派的”...
阅读(348) 评论(0)

Python基础检测:20171105

第一周的预习结束了效果并不理想,最后的检测也是有个别同学表现还可以.最后一次检测,除了依旧不是放在一个文件里,文件也没有标注作者从而导致我没办法一一回复外,有些问题写的不好意外.基本没什么毛病,摔!答案与解析第一题,公式转换,计算误差# 1. 门前有两棵树,其中一棵是枣树,我每天早上起来都会吃掉原三分之一又一个枣,一个星期刚好吃完,请问我一共吃了几个枣? (循环)def question_1(n=7...
阅读(219) 评论(0)

Python中斐波那契数列的四种写法

在这些时候,我可以附和着笑,项目经理是决不责备的。而且项目经理见了孔乙己,也每每这样问他,引人发笑。孔乙己自己知道不能和他们谈天,便只好向新人说话。有一回对我说道,“你学过数据结构吗?”我略略点一点头。他说,“学过数据结构,……我便考你一考。斐波那契数列用Python怎样写的?”我想,讨饭一样的人,也配考我么?便回过脸去,不再理会。孔乙己等了许久,很恳切的说道,“不能写罢?……我教给你,记着!这些字...
阅读(689) 评论(0)

学习Python3:20171031

简介本次作业继承于上一次的交互问题(用户屏幕输入输出),额外内容为文件在硬盘上的读取与存储.是为了之后的简易版本的自然语言处理任务做铺垫.题目""" 本次的问题很简单,文件读取,与,简单的人机交互,以及异常处理答题程序特殊要求,问题一共十个,问题和回答都需要存储到硬盘中(最起码保留一次),并可以计算分数.提示:open操作 + 自定义解析器,或者使用numpy,或者pandas的保存功能.交卷时间:...
阅读(419) 评论(0)

9.3 Trains and Evaluates the MNIST network using a feed dictionary

简介这部分代码来自tensorflow的源码,代码中的注释相当的详细,假如对于9.2 你已经比较详细,那么我建议您运行这份源码示例.他会给你很好的帮助. 这份代码主要展示了projector模块(当然你也可以结合9.2 进行扩展),其中的T-SNE以及PCA都是官方提供的可视化方案,很有意思.关键点 argparse : python的一个类库python中的argparse模块 fill_fee...
阅读(142) 评论(0)

学习Python3:201701030

第一步首先是开发环境的搭建参考:anconda 参考:类库问题IDE:pycharm,去官网下载即可,内容前两篇也有提到学习目标与计划第一周的计划是自学python,之后周一到周五每天都有作业.第一天的作业主要是考考基本流程语句,以大一学弟学妹的水平,应该能在限时内做完,但是实现方式会比较差,我给出的答案基本是启发性的,我带的七个人都是我亲自面试的,悟性还可以,我预估的主要问题是他们能不能开窍.具...
阅读(220) 评论(0)

9.2 mnist_with_summaries tensorboard 可视化展示

tensorboard tensorflow中的可视化组件在新版本的tensorflow 中tensorboard已经被整合,无需下载.其执行是利用了一个封装的内置服务器,性能不错. 我们可以将神经网络运行时的各类数据存储下来进行可视化展示,我首先展示其功能,然后再分解代码.本处例子源自tensorflow的官方源码,如果你需要了解更多,建议直接阅读官方文档展示最重要的网络结构的展示基本数据的展示...
阅读(226) 评论(0)

2.1 name_scope 简单入门(一)

name_scope 等内容主要是用来可视化的,tensoeboardimport tensorflow as tf import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'with tf.variable_scope('foo'): with tf.name_scope('bar'): v = tf.get_variable('v'...
阅读(364) 评论(0)

9.1 mnist_softmax 交叉熵多分类器

softmax交叉熵多分类器具体含义不再解释,这是一个我们比较常用的一个多分类器.深度学习的一大优点就是特征的自动构建,也正是因为该优点,使得分类器层显得不再那么重要,在Tensorflow的官方源码中,softmax是很常见的一个多分类器.其调用也十分的简单.此处再此单独拿出来介绍,是为了下一步的学习做准备.使用方法 cross_entropy = tf.reduce_mean( t...
阅读(397) 评论(0)

Python自定义:粒子群优化算法

#!usr/bin/env python #-*- coding:utf-8 _*- """ @author:fonttian @file: 粒子群优化算法.py @time: 2017/10/15 """# References from : http://blog.csdn.net/kunshanyuz/article/details/63683145import numpy as np im...
阅读(405) 评论(0)

deap实战_2017中国数学建模大赛_B题_第二题

简介原问题是给出一个定价策略,证明其相较于原来定价策略的优点.那么首先我们第一题第二问得到了一个 价格-完成率 函数,此时我们需要的是给出一个新的定价函数,并利用遗传算法得到最佳参数.思路 编码–>我们需要编码的是定价函数的参数 评价函数—->将编码输入的定价函数得到价格,然后将价格输入之前得到的 价格-完成率 函数得到完成率 求解的目标应当是最大化完成率 为了控制成本需要对价格进行一定的限制,避免...
阅读(636) 评论(2)

Deap : 遗传算法算法解决 背包问题

特殊自定义评价函数同前def evalKnapsack(individual): weight = 0.0 value = 0.0 for item in individual: weight += items[item][0] value += items[item][1] if len(individual) > MAX_ITEM...
阅读(489) 评论(0)
132条 共7页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:294877次
    • 积分:3637
    • 等级:
    • 排名:第10344名
    • 原创:107篇
    • 转载:21篇
    • 译文:4篇
    • 评论:50条
    博客专栏