关闭

数据标准化的方法与意义

含义数据标准化和归一化存在区别 数据归一化是数据标准化的一种典型做法,即将数据统一映射到[0,1]区间上. 数据的标准化是指将数据按照比例缩放,使之落入一个特定的区间.意义 求解需要 比如在SVM中处理分类问题是又是需要进行数据的归一化处理,不然会对准确率产生很大的影响,具体点说,比如避免出现因为数值过大导致c,g取值超过寻优范围除此之外,最明显的是在神经网络中的影响,主要有四个层面有利于初始...
阅读(1164) 评论(0)

神经网络为什么要归一化

作者:梁小h 转载自 http://nnetinfo.com/nninfo/showText.jsp?id=37 ========================这里是分割线============================ 1.数值问题。        无容置疑,归一化的确可以避免一些不必要的数值问题。输入变量的数量级未致于会引起数值问题吧,但其实要引起也...
阅读(1058) 评论(0)

梯度下降与delta法则

delta法则 尽管当训练样例线性可分时,感知器法则可以成功地找到一个权向量,但如果样例不是线性可分时它将不能收敛。 因此,人们设计了另一个训练法则来克服这个不足,称为 delta 法则(delta rule)。如果训练样本不是线性可分的,那么 delta 法则会收敛到目标概念的最佳 近似。  delta 法则的关键思想是使用梯度下降(gradient descent)来搜索可能权向...
阅读(1043) 评论(0)

一文弄懂神经网络中的反向传播法

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果...
阅读(1030) 评论(0)

朴素贝叶斯分类器(Navie Bayesian Classifier)中的几个要点(一)

关键字: 拉普拉斯修正(Laplacian correction) 懒惰学习(lazy leanring) 对数似然(log-likelihood) 拉普拉斯修正(Laplacian correction)朴素贝叶斯分类器的训练: 基于训练集D 来估计类先验概率P(y) 基于训练集D 为每个属性估计条件概率P(x|y) 因此当在某个训练集中,样本的一条特征值 EV 出现概率为 0 时,则会使计算的先...
阅读(1317) 评论(0)

统计学习方法第四章朴素贝叶斯法-李航

第4章 朴素贝叶斯法 朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出Y。 4.1 朴素贝叶斯法的学习与分类 基本方法 朴素贝叶斯法通过训练数据集学习X和Y的联合概率分布 P(X,Y)。...
阅读(1216) 评论(0)

98%的人没解出的德国面试逻辑题(离散数学篇)!?

之前一直想把二发表,但是因为某些事情一直没有发表。现在就写一下,到底怎么解和原来的那个逻辑题(其实是离散数学中的图)同一类型的题目。   上一篇的原文”题目如下:“一桶16斤的水,还有一个8斤的空水桶,和一个3斤的空水桶,问如何平均而精确地分给4个人。”(注意那4个人是可以携带任意水的,博主求六步内的解法,但是其他人给了很多解法,但是没有真正六步内的。)。“   而这一次先说一个类似的题目是“...
阅读(1988) 评论(1)

CSS样式优先级与权重计算方式

CSS中有很多样式控制方式,有很多选择方式,那么他的的优先级与权重又该怎么计算呢?@import与又是怎么回事呢?...
阅读(5014) 评论(2)

98%的人没解出的德国面试逻辑题

之前在某网站上看过一个号称“98%的人没解出的德国软件工程师面试逻辑题”,虽然不知道是真是假,但是今天姑且论论。“一桶16斤的水,还有一个8斤的空水桶,和一个3斤的空水桶,问如何平均而精确地分给4个人。”(注意那4个人是可以携带任意水的,博主求六步内的解法,但是其他人给了很多解法,但是没有真正六步内的。)。...
阅读(1333) 评论(0)
    个人资料
    • 访问:223332次
    • 积分:2536
    • 等级:
    • 排名:第14515名
    • 原创:71篇
    • 转载:17篇
    • 译文:2篇
    • 评论:20条
    博客专栏