关闭

5.2 TensorFlow:模型的加载,存储,实例

背景之前已经写过TensorFlow图与模型的加载与存储了,写的很详细,但是或闻有人没看懂,所以在附上一个关于模型加载与存储的例子,.其中模型很巧妙,比之前numpy写一大堆简单多了,这样有利于把主要注意力放在模型的加载与存储上.解析创建保存文件的类:saver = tf.train.Saver()saver = tf.train.Saver() ,即为常见保存模型...
阅读(1724) 评论(2)

7.3 TensorFlow笔记(基础篇):加载数据之从队列中读取

前言整体步骤在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 2. 从队列中读取数据读取TFRecords文件步骤使用队列读取数TFRecords 文件 数据的步骤 1. 创建张量,从二进制文件读取一个样本数据 2. 创建张量,从二进制文件随机读取一个mi...
阅读(265) 评论(0)

7.1 TensorFlow笔记(基础篇):加载数据之预加载数据与填充数据

TensorFlow加载数据TensorFlow官方共给出三种加载数据的方式: 1. 预加载数据 2. 填充数据 预加载数据的缺点: 将数据直接嵌在数据流图中,当训练数据较大时,很消耗内存.填充的方式也有数据量大,消耗内存高的缺点,并且数据类型的转换等中间环节增加了不少开销(之前的笔记示例中主要使用的这两种方式).最好用第三种方法,在图中定义好文件读取的方法,让Tensorflow 自己从...
阅读(247) 评论(0)

7.2 TensorFlow笔记(基础篇): 生成TFRecords文件

前言在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 2. 从队列中读取TFRecords二进制文件,能够更好的利用内存,更方便的移动和复制,并且不需要单独的标记文件 下面官网给出的,对mnist文件进行操作的code,具体代码请参考:tensorflow-m...
阅读(360) 评论(0)

6.1 Tensorflow笔记(基础篇):队列与线程

前言在Tensorflow的实际应用中,队列与线程是必不可少,主要应用于数据的加载等,不同的情况下使用不同的队列,主线程与其他线程异步进行数据的训练与读取,所以队列与线程的知识也是Tensorflow必须要学会的重要知识 另一方面,Tensorflow作为符号编程框架,在构图后,加载数据有三种方式,预加载与填充数据都存在,数据量大消耗内存等情况的出现.使用第三种方式文件读取避免了前两者的缺点,但是...
阅读(377) 评论(2)

3.1 Tensorflow: 批标准化(Batch Normalization)

BN 简介背景批标准化(Batch Normalization )简称BN算法,是为了克服神经网络层数加深导致难以训练而诞生的一个算法。根据ICS理论,当训练集的样本数据和目标样本集分布不一致的时候,训练得到的模型无法很好的泛化。而在神经网络中,每一层的输入在经过层内操作之后必然会导致与原来对应的输入信号分布不同,,并且前层神经网络的增加会被后面的神经网络不对的累积放大。这个问题的一个解决思路就是根...
阅读(502) 评论(0)

4.2 Tensorflow笔记:池化函数

池化卷积神经网络的结构其中,input为输入,conv为卷积层,由卷积核构成,pool为池层,由池化函数构成最后是全连接层与输出层,其负责对卷积层提取的特征进行处理以获得我们需要的结果池化函数的意义池化层的输入一般来源于上一个卷积层,主要作用是提供了很强的鲁棒性(例如max-pooling是取一小块区域中的最大值,此时若此区域中的其他值略有变化,或者图像稍有平移,pooling后的结果仍不变),并且...
阅读(685) 评论(0)

4.1 Tensorflow:卷积函数

卷积卷积神经网络的结构其中,input为输入,conv为卷积层,由卷积核构成,pool为池层,由池化函数构成最后是全连接层与输出层,其负责对卷积层提取的特征进行处理以获得我们需要的结果卷积函数卷积函数是本篇文章要讲解的内容,在TensorFlow中卷积函数输入的参数其输入参数 主要有input, filter, strides, padding, use_cudnn_on_gpu=None,dat...
阅读(647) 评论(0)

1.1 Tensorflow笔记(基础篇): 图与会话,变量

图与会话import tensorflow as tf import os# 取消打印 cpu,gpu选择等的各种警告 # 设置TF_CPP_MIN_LOG_LEVEL 的等级,1.1.0以后设置2后 只不显示警告,之前需要设置3,但设置3不利于调试 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import time# 创建一个常量 op, 产生一个 1x2 矩...
阅读(311) 评论(0)

利用 TensorFlow 实现上下文的 Chat-bots

在我们的日常聊天中,情景才是最重要的。我们将使用 TensorFlow 构建一个聊天机器人框架,并且添加一些上下文处理机制来使得机器人更加智能。 “Whole World in your Hand” — Betty Newman-Maguire (http://www.bettynewmanmaguire.ie/) 你是否想过一个问题,为什么那么多的聊天机器人会缺乏会话情景...
阅读(1496) 评论(0)
    个人资料
    • 访问:253306次
    • 积分:3071
    • 等级:
    • 排名:第11967名
    • 原创:93篇
    • 转载:20篇
    • 译文:2篇
    • 评论:35条
    博客专栏
    最新评论