关闭

NLTK 词频统计(一) 词频统计,绘图,词性标注

内容简介 代码一,笔记简略版本 代码二,词频统计与pandas集合,分词词性提取与词频统计结合 代码一import FontCN_NLPtools as fts引用的是我自己写的一个类,是对我常用的一些方法的封装,code已经上传# 解决乱码问题 import matplotlib as mpl mpl.rcParams[u'font.sans-serif'] = [u'KaiTi'] mpl.rcParams[u...
阅读(1085) 评论(0)

封装汉语自然语言处理中的常用方法(附代码:生成中文词云)

前叙该文章写作共花费二十分钟,阅读只需要七分钟左右,读完该文章后,你将学会使用少量代码,将中文小说,中文新闻,或者其他任意一段中文文本生成词云图背景在进行汉语自然语言处理时候,经常使用的几个方法,分词,清除停用词,以及获取新词,为了方便使用我们将其封装. 这样我们就可以通过一行简单的代码获取清除停用词并和英语一样分词完毕,并以空格分割的汉语字符串,或者还可以获得其他功能.至于之所以加上这个例子,是...
阅读(2317) 评论(0)

Python 任意中文文本生成词云 最终版本

前叙利用下面的代码你将可以将任意中文文本生成词云,其分词部分由jieba,NLPIR2016两个部分组成,生成词语由worldcloud负责,默认会自动发现文本中的20个新词并添加到词库中,当然你也可以手动添加或者通过txt添加用户词库.code中已经有十分详细的设置说明与代码解释,如果你想进一步学习其详细内容,你可以参考我在第二部分提供的博客列表想要进一步学习使用的参考博客列表Python词云 w...
阅读(1338) 评论(0)

Python + worldcloud + jieba 十分钟学会用任意中文文本生成词云

前述本文需要的两个Python类库 jieba:中文分词分词工具 wordcloud:Python下的词云生成工具写作本篇文章用时一个小时半,阅读需要十分钟,读完该文章后你将学会如何将任意中文文本生成词云 Python词云 worldcloud 十五分钟入门与进阶 Python中文分词 jieba 十五分钟入门与进阶代码组成简介 代码部分来源于其他人的博客,但是因为bug或者运行效率的原因,...
阅读(5302) 评论(2)

Python词云 wordcloud 十五分钟入门与进阶

整体简介基于Python的词云生成类库,很好用,而且功能强大.博主个人比较推荐 github:https://github.com/amueller/word_cloud 官方地址:https://amueller.github.io/word_cloud/ 写这篇文章花费一个半小时,阅读需要十五分钟,读完本篇文章后您将能上手wordcloud中文词云与其他要点,我将会在下一篇文章中介绍快速生...
阅读(27490) 评论(3)
    个人资料
    • 访问:252980次
    • 积分:3064
    • 等级:
    • 排名:第11855名
    • 原创:93篇
    • 转载:20篇
    • 译文:2篇
    • 评论:35条
    博客专栏
    最新评论