关闭

4.2 Tensorflow笔记:池化函数

池化卷积神经网络的结构其中,input为输入,conv为卷积层,由卷积核构成,pool为池层,由池化函数构成最后是全连接层与输出层,其负责对卷积层提取的特征进行处理以获得我们需要的结果池化函数的意义池化层的输入一般来源于上一个卷积层,主要作用是提供了很强的鲁棒性(例如max-pooling是取一小块区域中的最大值,此时若此区域中的其他值略有变化,或者图像稍有平移,pooling后的结果仍不变),并且...
阅读(163) 评论(0)

机器学习常见算法汇总

原文地址:http://www.ctocio.com/hotnews/15919.html 偶然看到的一篇文章,这篇文章写的很清晰,所以转载一下,补充自己的知识库,以下为正文 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人...
阅读(446) 评论(0)

神经网络为什么要归一化

作者:梁小h 转载自 http://nnetinfo.com/nninfo/showText.jsp?id=37 ========================这里是分割线============================ 1.数值问题。        无容置疑,归一化的确可以避免一些不必要的数值问题。输入变量的数量级未致于会引起数值问题吧,但其实要引起也...
阅读(1049) 评论(0)

梯度下降与delta法则

delta法则 尽管当训练样例线性可分时,感知器法则可以成功地找到一个权向量,但如果样例不是线性可分时它将不能收敛。 因此,人们设计了另一个训练法则来克服这个不足,称为 delta 法则(delta rule)。如果训练样本不是线性可分的,那么 delta 法则会收敛到目标概念的最佳 近似。  delta 法则的关键思想是使用梯度下降(gradient descent)来搜索可能权向...
阅读(1035) 评论(0)

一文弄懂神经网络中的反向传播法

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果...
阅读(1025) 评论(0)

朴素贝叶斯分类器(Navie Bayesian Classifier)中的几个要点(一)

关键字: 拉普拉斯修正(Laplacian correction) 懒惰学习(lazy leanring) 对数似然(log-likelihood) 拉普拉斯修正(Laplacian correction)朴素贝叶斯分类器的训练: 基于训练集D 来估计类先验概率P(y) 基于训练集D 为每个属性估计条件概率P(x|y) 因此当在某个训练集中,样本的一条特征值 EV 出现概率为 0 时,则会使计算的先...
阅读(1295) 评论(0)

OpenCV官方文档 理解k - means聚类

理解k - means聚类 目标 在这一章中,我们将了解k - means聚类的概念,它是如何工作等。 理论 我们将这个处理是常用的一个例子。 t恤尺寸问题 考虑一个公司要发布一个新模型的t恤。 显然他们将不得不制造模型满足人们各种尺寸的大小不同。 所以公司的数据甚至€™身高和体重,并把它们放到图,如下: 公司无法为所有的尺寸制作衣服。 相反,他们把人分为...
阅读(1135) 评论(0)

统计学习方法第四章朴素贝叶斯法-李航

第4章 朴素贝叶斯法 朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出Y。 4.1 朴素贝叶斯法的学习与分类 基本方法 朴素贝叶斯法通过训练数据集学习X和Y的联合概率分布 P(X,Y)。...
阅读(1211) 评论(0)
    个人资料
    • 访问:221100次
    • 积分:2517
    • 等级:
    • 排名:第14612名
    • 原创:71篇
    • 转载:17篇
    • 译文:2篇
    • 评论:19条
    博客专栏