# Eight(South Central USA 1998)

811人阅读 评论(0)

Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
 1  2  3  4
5  6  7  8
9 10 11 12
13 14 15  x


where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
5  6  7  8     5  6  7  8     5  6  7  8     5  6  7  8
9  x 10 12     9 10  x 12     9 10 11 12     9 10 11 12
13 14 11 15    13 14 11 15    13 14  x 15    13 14 15  x
r->            d->            r->


The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.

Input

You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

1 2 3
x 4 6
7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8

Output

You will print to standard output either the word unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.

Sample Input

2  3  4  1  5  x  7  6  8

Sample Output

ullddrurdllurdruldr

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

using namespace std;

#define INF 0x3f3f3ff3f
struct node
{
int x,y;
int d;
char c;
int g[9];
}T[400000];

int vis[400000];
int fac[]={1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800};
int dir[][6]={{1,0},{-1,0},{0,1},{0,-1}};

char cur[]="udlr";

void print(int g[])
{
int num=0;
for(int i=0;i<9;i++)
{
cout<=0&&x<3&&y>=0&&y<3) return true;
return false;
}

void bfs(int c[])
{
memset(vis,0,sizeof 0);
queueque;

node k;
for(int i=0;i<9;i++) k.g[i]=c[i];
k.x=2;
k.y=2;
k.d=-1;

que.push(k);

T[cantor(k.g)]=k;
vis[cantor(k.g)]=1;

while(que.size())
{
k=que.front();
que.pop();
//  print(k.g);
// system("pause");

int p=cantor(k.g);

T[p]=k;

for(int i=0;i<4;i++)
{
node temp=k;
temp.x+=dir[i][0];
temp.y+=dir[i][1];

if(judge(temp.x,temp.y))
{
swap(temp.g[3*temp.x+temp.y],temp.g[3*k.x+k.y]);
int ca=cantor(temp.g);
if(!vis[ca])
{
temp.d=p;
temp.c=cur[i];
vis[ca]=1;
que.push(temp);
}
}
}
}
}

int main()
{
int c[20];
for(int i=0;i<9;i++) if(i==8) c[i]=0; else c[i]=i+1;

bfs(c);
int an=cantor(c);

char a[5];
int s[15];
while(scanf("%s",a)!=EOF)
{
int num=0;
if(a[0]=='x') s[num++]=0;
else s[num++]=a[0]-'0';

for(int i=1;i<9;i++)
{
scanf("%s",a);
if(a[0]=='x') s[num++]=0;
else s[num++]=a[0]-'0';
}

int ca=cantor(s);

if(vis[ca])
{
int t=ca;
while(1)
{
if(t==an) break;
printf("%c",T[t].c);
t=T[t].d;
}
}
else printf("unsolvable");
puts("");
}

return 0;
}


0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：52849次
• 积分：2085
• 等级：
• 排名：千里之外
• 原创：195篇
• 转载：7篇
• 译文：0篇
• 评论：1条
队友
阅读排行
最新评论