关闭

关于递推式的那些事(对于通式的求法[特征方程])

213人阅读 评论(0) 收藏 举报

其实我只是一个高一的,
然而并不懂通式,最近有需求(233),所以去自学了!
作为新高一的,我的数学渣得可怜啊!
直接步入正题吧!
对于一个递推式都存在一个特征方程…..
什么是特征方程呢?
很简单:比如f(n)=f(n-1)+f(n-2)的特征方程为x^3=x^2+x即x^2=x+1
而f(n)=2*f(n-1)+7*f(n-2) 的特征方程为x^3=2*x^2+7*x即x^2=2*x+7
大概就这样吧!
而对于一个特征方程的解x1,x2,都称为特征解!
拿f(n)=f(n-1)+f(n-2)做实验吧!

求出x1=(1+√5)/2 x2=(1-√5)/2;
存在一个式子f(n)=A*X1^n+B*X2^n
怎么求A,B呢?其实也很简单?
不是已知了f(1)=1,f(2)=1; X1=(1+√5)/2 ,X2=(1-√5)/2;
所以你猜到怎么做了吧!
A*[(1+√5)/2]^1+B*[(1-√5)/2]^1=1
A*[(1+√5)/2]^2+B*[(1-√5)/2]^2=1
解得A=1/√5,B=-(1/√5);
然后就GG了!
直接带入…………f(n)=A*X1^n+B*X2^n
f(n)=1/√5*[(1+√5)/2]^n+(-1/√5)*[(1-√5)/2]^n
整理得:
f(n)=1/√5*[((1+√5)/2)^n-((1-√5)/2)^n];
而对于多项的,其实都是一样的!

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:919次
    • 积分:69
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章存档