关于递推式的那些事(对于通式的求法[特征方程])

原创 2016年08月28日 20:55:15

其实我只是一个高一的,
然而并不懂通式,最近有需求(233),所以去自学了!
作为新高一的,我的数学渣得可怜啊!
直接步入正题吧!
对于一个递推式都存在一个特征方程…..
什么是特征方程呢?
很简单:比如f(n)=f(n-1)+f(n-2)的特征方程为x^3=x^2+x即x^2=x+1
而f(n)=2*f(n-1)+7*f(n-2) 的特征方程为x^3=2*x^2+7*x即x^2=2*x+7
大概就这样吧!
而对于一个特征方程的解x1,x2,都称为特征解!
拿f(n)=f(n-1)+f(n-2)做实验吧!

求出x1=(1+√5)/2 x2=(1-√5)/2;
存在一个式子f(n)=A*X1^n+B*X2^n
怎么求A,B呢?其实也很简单?
不是已知了f(1)=1,f(2)=1; X1=(1+√5)/2 ,X2=(1-√5)/2;
所以你猜到怎么做了吧!
A*[(1+√5)/2]^1+B*[(1-√5)/2]^1=1
A*[(1+√5)/2]^2+B*[(1-√5)/2]^2=1
解得A=1/√5,B=-(1/√5);
然后就GG了!
直接带入…………f(n)=A*X1^n+B*X2^n
f(n)=1/√5*[(1+√5)/2]^n+(-1/√5)*[(1-√5)/2]^n
整理得:
f(n)=1/√5*[((1+√5)/2)^n-((1-√5)/2)^n];
而对于多项的,其实都是一样的!

相关文章推荐

递推公式的特征方程及通项公式

问题: 递归公式F(N) = F(N-1)+ F(N-2),F(N)的特征方程为:x^2 = x + 1.该递归公式即斐波那契数列,但其特征方程是怎么求得的,却不明白,于是查找了一些资料,总结如下....

乘法逆元总结(求法及递推式)

乘法逆元 (一)、定义。 对于正整数和,如果有, 那么把这个同余方程中的最小正整数解叫做模的逆元。 个人理解: 在一些题目中,经常因为数据过大,题目要求结果要模除一个数,常见的mod=1...

特征方程法求解递推关系中的数列通项

一、(一阶线性递推式)设已知数列的项满足,其中求这个数列的通项公式。 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于掌握的解法——特征方程法:针对...

单模光纤的特征方程

  • 2013年02月25日 22:17
  • 86KB
  • 下载

特征方程的物理意义

我们先来看点直观性的内容。矩阵的特征方程式是: 矩阵实际可以看作一个变换,方程左边就是把向量x变到另一个位置而已;右边是把向量x作了一个拉伸,拉伸量是lambda。那么它的意义就很明显了...

Gym 100379C Fibonacci number’s ratio (the hard version) (特征方程)

Gym 100379C题意:定义一个新的fibonacci数列:使G(n) = a * G(n - 1) + b * G(n - 2); 求n→∞时,G(n) / G(n-1) 的值(保留小数点后6...

本证方程的本征值 与 特征方程的特征值 的 区别 辨析

本证方程的本征值 与 特征方程的特征值 的 区别 辨析 [原创博客,转载注明出处:] 在本科时候学习线性代数矩阵论时,接触到了特征方程以及特征值这个概念;到了后面学习了数学物理方程以及量子力学...

CF 185A(递推式构造矩阵求解)

A. Plant time limit per test 2 seconds memory limit per test 256 megabytes input s...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:关于递推式的那些事(对于通式的求法[特征方程])
举报原因:
原因补充:

(最多只允许输入30个字)