关闭

合并果子----(堆的应用)

114人阅读 评论(0) 收藏 举报

合并果子人人皆知,然而这并不是DP,是可以每次选最小的就可以对,
but我直接暴力,神奇的TLE了!
于是乎,我用了堆
这里写图片描述

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
int d[100000];    //堆
int main()
{
    int m,n,i,j,k,l;
    cin>>n;
    for(i=1;i<=n;i++)
    {
        cin>>d[i];
        k=i;
        while(k>1 && d[k]<d[k/2])  //如果d[i]小于左子树,则往上浮
        {
            swap(d[k],d[k/2]); //上浮过程
            k=k/2;
        }   
    }
    int len=n,ans=0;
    while(len>1)
    {
        int s=0,u;
        s+=d[1]; //取出最小值合并
        d[1]=d[len--]; //填充堆顶
        u=1;
        while(len>=u*2 && d[u]>d[u*2] ||len>=u*2+1 && d[u]>d[u*2+1]) //如果d[u]大于左子树,则像下沉,即调整堆
        {
            int t=u*2;   //下沉过程
            if(d[u*2]>d[u*2+1]) t++;
            swap(d[u],d[t]);
            u=t;
        }
        s+=d[1]; //再取一次最小值
        d[1]=d[len--];
        //d[len+1]=0;
        u=1;
        while(len>=u*2 && d[u]>d[u*2] ||len>=u*2+1 && d[u]>d[u*2+1])
        {
            int t=u*2;
            if(d[u*2]>d[u*2+1]) t++;
            swap(d[u],d[t]);
            u=t;
        }
        ans+=s; //合并果子后又放入堆中,最后剩下的即是解....
        d[++len]=s; 
        u=len;
        while(u>1 && d[u]<d[u/2])
        {
            swap(d[u],d[u/2]);
            u=u/2;
        }
    }
    cout<<ans; //解
    return 0;
}
1
0

猜你在找
【套餐】Hadoop生态系统零基础入门
【套餐】嵌入式Linux C编程基础
【套餐】2017软考系统集成项目——任铄
【套餐】Android 5.x顶级视频课程——李宁
【套餐】深度学习入门视频课程——唐宇迪
【直播】广义线性模型及其应用——李科
【直播】从0到1 区块链的概念到实践
【直播】计算机视觉原理及实战——屈教授
【直播】机器学习之凸优化——马博士
【直播】机器学习&数据挖掘7周实训--韦玮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:804次
    • 积分:68
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章存档