关闭

Codeforces 596D 区间DP

583人阅读 评论(0) 收藏 举报
分类:

题目链接:

题意:

  有n棵树排成一排,高度都为h.

  主人公要去砍树,每次等概率地随机选择没倒的树中最左边的树或者最右边的树把它砍倒.每棵树被砍到后,有p的概率会往左边倒,(1-p)的概率往右边倒.

  树倒下后如果压到别的树,即如果那棵树倒下的方向上距离不到h的地方还有一棵树,,那么那棵树也会朝和这个树相同的方向倒下.

  问最后所有的树都被砍完后覆盖的地面的长度的期望.



分析:

  由于树的数量n只有1000,所以O(n^2)的方法是可行的.很自然就能想到区间DP.

  设DP(l,r,s1,s2)为砍掉第l棵树到第r棵树之间的所有树,并且第l-1棵树的状态s1,第r+1棵树的状态是s2,此时覆盖地面的长度的期望.其中,s1和s2只有0和1两种取值,0表示向左倒,1表示向右倒.

  那么最后的结果即DP(1,n,0,1),第0棵树和第n+1棵树要设的足够远以免对结果产生影响.

  状态的转移慢慢推就好.

  DP(l,r,s1,s2)的结果可以从DP(l+1,r,0,s2),DP(l+1,r,1,s2),DP(l,r-1,s1,0),DP(l,r-1,s1,1)四种情况推导出来.

  需要注意的是边界条件.

  具体还是看代码吧.


#include <bits/stdc++.h>
using namespace std;
const int maxn=2005;
int h;
double p;
int a[maxn];
double dp[maxn][maxn][2][2];
double DW(int l,int r,int sl,int sr)
{
	if (dp[l][r][sl][sr]) return dp[l][r][sl][sr];
	if (l==r) 
	{
		if (sl&&a[l-1]+h>a[l]) 
		{
			if (sr) return dp[l][r][sl][sr]=min(h,a[l+1]-a[l]);
			else return dp[l][r][sl][sr]=min(h,max(0,a[r+1]-a[r]-h));
		}
		else if (!sr&&a[r+1]-h<a[r]) 
		{
			if (sl) return dp[l][r][sl][sr]=min(h,max(a[l]-a[l-1]-h,0));
			else return dp[l][r][sl][sr]=min(h,a[l]-a[l-1]);
		}
		double ans=0;
		if (sl) ans+=p*min(h,max(a[l]-a[l-1]-h,0));
		else ans+=p*min(h,a[l]-a[l-1]);
		if (sr) ans+=(1-p)*min(h,a[r+1]-a[r]);
		else ans+=(1-p)*min(h,max(0,a[r+1]-a[r]-h));
		return dp[l][r][sl][sr]=ans;
	}
	if (sl&&a[l-1]+h>a[l])       return dp[l][r][sl][sr]=DW(l+1,r,1,sr)+min(h,a[l+1]-a[l]);
	else if (!sr&&a[r+1]-h<a[r]) return dp[l][r][sl][sr]=DW(l,r-1,sl,0)+min(h,a[r]-a[r-1]);
	double ans=0;
	ans+=0.5*(1-p)*(DW(l+1,r,1,sr)+min(h,a[l+1]-a[l]));
	ans+=0.5*p    *(DW(l,r-1,sl,0)+min(h,a[r]-a[r-1]));
	if (sl) ans+=0.5*p*(DW(l+1,r,0,sr)+min(h,max(0,a[l]-a[l-1]-h)));
	else    ans+=0.5*p*(DW(l+1,r,0,sr)+min(h,a[l]-a[l-1]));
	if (sr) ans+=0.5*(1-p)*(DW(l,r-1,sl,1)+min(h,a[r+1]-a[r]));
	else    ans+=0.5*(1-p)*(DW(l,r-1,sl,1)+min(h,max(0,a[r+1]-a[r]-h)));
	return dp[l][r][sl][sr]=ans;
}
int main()
{
	int n;
	while (~scanf("%d%d%lf",&n,&h,&p))
	{
		for (int i=1;i<=n;i++) scanf("%d",&a[i]);
		memset(dp,0,sizeof(dp));
		sort(a+1,a+n+1);
		a[0]=a[1]-h;
		a[n+1]=a[n]+h;
		printf("%.12lf\n",DW(1,n,0,1));
	}
	return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:12061次
    • 积分:347
    • 等级:
    • 排名:千里之外
    • 原创:23篇
    • 转载:2篇
    • 译文:0篇
    • 评论:3条
    文章分类
    最新评论