# R基础练习题

282人阅读 评论(0)

• 内积和外积：
两个向量的内积，即数量积或点积；若x,y是相同长度的向量x%*%y表示内积；R函数crossprod(x,y)也表示作内积,相当于t(x)%*%y,函数tcrossprod(x,y)，相当于x%*%t(y),此函数x,y也可以为矩阵。

两个向量的外积，即向量级或叉积，x%o%y表示外积；
例：

x <- c(1:4)
y <- c(3:6)
x%*%y
[,1]
[1,]   50
crossprod(x,y)
[,1]
[1,]   50
x%o%y
[,1] [,2] [,3] [,4]
[1,]    3    4    5    6
[2,]    6    8   10   12
[3,]    9   12   15   18
[4,]   12   16   20   24
tcrossprod(x,y)
[,1] [,2] [,3] [,4]
[1,]    3    4    5    6
[2,]    6    8   10   12
[3,]    9   12   15   18
[4,]   12   16   20   24

outer()的一般调用格式为
outer(x，y，fun=”*”),其中x,y为矩阵或向量，fun默认为乘法运算。函数outer()在绘制三维曲面时非常有用，它可生成一个x和y的网格。

outer(x,y)
[,1] [,2] [,3] [,4]
[1,]    3    4    5    6
[2,]    6    8   10   12
[3,]    9   12   15   18
[4,]   12   16   20   24

outer()函数在三维视图的应用：

x1 <- seq(-5,5,0.25)
x2 <- seq(-2,2,0.1)
f <- function(x,y) x^2+50*cos(y)
z <- outer(x1,x2,f)
persp(x1,x2,z)

• 矩阵运算
A <- matrix(c(35,4,12,2,14,11,9,5,11,3,38,12,1,0,4,2),4)
det(A)#行列式
solve(A) #矩阵A的逆
crossprod(A,A) #t(A)%*%A
tcrossprod(A,A) #A%*%t(A)
solve(A)%*%A #A^(-1)%*%A
solve(A)%*%A-A%*%solve(A)

> det(A)
[1] 9020
> solve(A)
[,1]        [,2]         [,3]         [,4]
[1,]  0.034811530 -0.03680710 -0.004545455 -0.008314856
[2,] -0.007095344  0.09667406 -0.018181818  0.039911308
[3,] -0.020399113  0.02793792  0.072727273 -0.135254989
[4,]  0.105321508 -0.37250554 -0.386363636  1.220066519

crossprod(A,A)
[,1] [,2] [,3] [,4]
[1,] 1389  652  877   87
[2,]  652  423  589   60
[3,]  877  589 1718  187
[4,]   87   60  187   21
> tcrossprod(A,A)
[,1] [,2] [,3] [,4]
[1,] 1543  327  968  274
[2,]  327  146  261   99
[3,]  968  261 1685  533
[4,]  274   99  533  177
A%*%t(A)
[,1] [,2] [,3] [,4]
[1,] 1543  327  968  274
[2,]  327  146  261   99
[3,]  968  261 1685  533
[4,]  274   99  533  177
solve(A)%*%A
[,1]         [,2]          [,3] [,4]
[1,]  1.000000e+00 2.602085e-17  2.081668e-17    0
[2,] -4.163336e-17 1.000000e+00 -2.775558e-17    0
[3,]  0.000000e+00 0.000000e+00  1.000000e+00    0
[4,]  0.000000e+00 4.440892e-16  0.000000e+00    1

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
最新评论