杨氏矩阵的编写

原创 2015年07月07日 09:31:36
题目:

在一个二维数组中,每行都按照从左到右的递增的顺序排序。每列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个数组和一个数,判断数组中是否包含这个数。

<pre name="code" class="cpp">#include<iostream>
using namespace std;

int find_one_num(int arr[], int rows, int cols, int num)
{
	int find = 0;
	if (arr != NULL && rows > 0 && cols > 0)
	{
		int row = 0;
		int col = cols - 1;
		while (row < rows && col >= 0)
		{
			if (arr[row*cols + col] == num)
			{
				find = 1;
				break;
			}
			else if (arr[row *cols + col] > num)
			{
				
				col--;
			}
			else
			{
				row++;
			}
		}
	}
	return num;
}

int main()
{
	int arr[4][4] = { { 1, 2, 8, 9 }, { 2, 4, 9, 12 }, { 4, 7, 10, 13 }, {6,8,11,15} };
	int ret = find_one_num((int *)arr, 4, 4, 7);
	cout << ret <<endl;
	return 0;
}




找北大同学

我参与的CSDN论坛的一些题目
  • zzwu
  • zzwu
  • 2014年10月14日 04:28
  • 3890

程序员,不要让微博占用你太多时间。

不管我们是否意识到,我们无法否认一个事实,微博火了,微博和其它新兴的互联网工具一样在改变着我们的生活。 不过,我个人想对程序员们说一句话,不要让微博占用你太多时间。   为什么? 要回答这个问题...

杨氏矩阵-young tableau 算法分析+实现

简介:young tableau 是一个很奇特的数据结构,它的性质是堆和BST(二叉查找树)的结合,对于查找它的效率优于堆,对于删除和插入它比BST更方便。 young tableau是一个m*n的矩...
  • zzran
  • zzran
  • 2013年01月08日 18:06
  • 2577

第二十三、四章:杨氏矩阵查找,倒排索引关键词Hash不重复编码实践

第二十三、四章:杨氏矩阵查找,倒排索引关键词Hash不重复编码实践 作者:July、yansha。编程艺术室出品。 出处:结构之法算法之道。 前言   ...

杨氏矩阵 中查找一个数字是否存在,时间复杂度小于O(N)

#include int FIND_NUMBER(int arr[3][3],int key) { int i = 0,j = 2;//使数据从对角线的左上开始比较。 while(i=0) { ...

剑指offer之数组的调整及在杨氏矩阵中的查找

1.调整数组使奇数全部都位于偶数前面。 题目:输入一个整数数组,实现一个函数,来调整该数组中数字的顺序使得数组中所有的奇数位于数组的前半部分,所有偶数位于数组的后半部分。 首先分析一下:看到这样一个...

杨氏矩阵找第N大(小)的O(N)线性算法

杨氏矩阵:一个N*N的矩阵,它的每行每列都单调递增(或者宽松一些,单调不减),即a[i][j] 遇到的两道面试题: 1. 输出杨氏矩阵中最小的N个数。 2. 两个升序数组A和B,长度都是N。...
  • taoqick
  • taoqick
  • 2014年04月09日 13:54
  • 1397

杨氏矩阵的查找

题目描述 杨氏矩阵,即在一个二维数组中,每一行都按照从左到右严格递增的顺序排序,每一列都按照从上到下严格递增的顺序排序。请完成一个函数,输入这样的一个N*N的二维数组和M个整数,判断数组中是否含有上...

查找----二维数组的查找之杨氏矩阵

原帖在此;http://blog.csdn.net/michealmeng555/article/details/2489923 算法研讨的论文【原创分享】 杨氏矩阵 Young Tableau ...

杨氏矩阵数字查找

杨氏矩阵,二维数组的每行从左到右是递增的,每列从上到下是递增的. 例如: #define ROWS 3 #define COLS 3 void print_se_arr(int...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:杨氏矩阵的编写
举报原因:
原因补充:

(最多只允许输入30个字)