关闭
当前搜索:

梯度算法之批量梯度下降,随机梯度下降和小批量梯度下降

在机器学习领域,体梯度下降算法分为三种 - 批量梯度下降算法(BGD,Batch gradient descent algorithm) - 随机梯度下降算法(SGD,Stochastic gradient descent algorithm) - 小批量梯度下降算法(MBGD,Mini-batch gradient descent algorithm)...
阅读(302) 评论(0)

梯度算法之梯度上升和梯度下降

第一次看见随机梯度上升算法是看《机器学习实战》这本书,当时也是一知半解,只是大概知道和高等数学中的函数求导有一定的关系。下边我们就好好研究下随机梯度上升(下降)和梯度上升(下降)。...
阅读(447) 评论(0)

回归分析之Sklearn实现电力预测

使用pandas读取数据,加载到sklearn的线性回归函数中,进行模型训练,预测,并对最终结果进行画图展示。...
阅读(463) 评论(0)

回归分析之线性回归(N元线性回归)

在上一篇文章中我们介绍了 回归分析之理论篇,在其中我们有聊到线性回归和非线性回归,包括广义线性回归,这一篇文章我们来聊下回归分析中的线性回归。...
阅读(498) 评论(0)

几种距离计算公式在数据挖掘中的应用场景分析

本文涉及以下几种距离计算公式的分析,参考资料为《面向程序员的数据挖掘指南》 - 曼哈顿距离 - 欧几里得距离 - 闵可夫斯基距离 - 皮尔逊相关系数 - 余弦相似度...
阅读(569) 评论(0)

回归分析之理论篇

2015年的机器学习博客其实都是看《机器学习实战》这本书时学到的,说实话当时也是知其然,不知其所以然,以至于对其理解不深刻,好多细节和理论知识都搞的是乱七八糟,自从工作之后再去看一个算法,思考的比之前多了点,查看资料也比之前多了点,生怕理解错误,影响其他人,当然在理解的程度上还是不够深刻,这也是一个学习的过程吧,记录一下,欢迎指正。...
阅读(539) 评论(0)

K-means 聚类算法的理解与案例实战

工作之后,发现对算法和技术的理解和上学时学习是不一样的,当时也整理了几篇关于k-means聚类的文章,但是现在看起来比较苍白和空洞,于是打算带着重新学习的态度对以往学习过或者见过的一些机器学习算法进行温习和总结,写的不足之处还望路过大神指点一二。...
阅读(3346) 评论(16)

MachingLearning中的距离和相似性计算以及python实现

在机器学习中,经常要用到距离和相似性的计算公式,我么要常计算个体之间的差异大小,继而评价个人之间的差异性和相似性,最常见的就是数据分析中的相关分析,数据挖掘中的分类和聚类算法。如利用k-means进行聚类时,判断个体所属的类别,要利用距离计算公式计算个体到簇心的距离,如利用KNN进行分类时,计算个体与已知类别之间的相似性,从而判断个体所属的类别等。...
阅读(3318) 评论(4)

推荐算法的回顾总结

之前看过一段时间协同过滤的推荐算法,当时理解并不深刻,对于其浅显的理解是从海量数据中挖掘出小部分与你品味相同的用户,协同过滤分为基于用户的和基于物品的。...
阅读(3923) 评论(4)

《推荐系统》基于图的推荐算法

1:概述 2:原理简介 3:代码实现 一:概述         基于图的模型(graph-based model)是推荐系统中的重要内容。其实,很多研究人员把基于邻域的模型也称为基于图的模型,因为可以把基于邻域的模型看做基于图的模型的简单形式         在研究基于图的模型之前,首先需要将用户的行为数据,表示成图的形式,下面我们讨论的用户行为数据是用二元数组组成的,其中每个二元组...
阅读(8975) 评论(2)

[置顶] 《推荐系统》基于标签的用户推荐系统

1:联系用户兴趣和物品的方式 2:标签系统的典型代表 3:用户如何打标签 4:基于标签的推荐系统 5:算法的改进 源代码查看地址:github查看 一:联系用户兴趣和物品的方式     推荐系统的目的是联系用户的兴趣和物品,这种联系方式需要依赖不同的媒介。目前流行的推荐系统基本上是通过三种方式联系用户兴趣和物品。                                           1:利用用户喜欢过的物品,给用户推荐与他喜欢过的物品...
阅读(19276) 评论(7)

[置顶] 《推荐系统》基于用户和Item的协同过滤算法的分析与实现(Python)

1:协同过滤算法简介 2:协同过滤算法的核心 3:协同过滤算法的应用方式 4:基于用户的协同过滤算法实现 5:基于物品的协同过滤算法实现 一:协同过滤算法简介     关于协同过滤的一个最经典的例子就是看电影,有时候不知道哪一部电影是我们喜欢的或者评分比较高的,那么通常的做法就是问问周围的朋友,看看最近有什么好的电影推荐。在问的时...
阅读(25738) 评论(29)

《机器学习实战》利用PCA来简化数据

=====================================================================   《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记也包含一些其他python实现的机器学习算法     github 源码同步:https://github.com/Thinkgamer/Machine-Learning-Wit...
阅读(2856) 评论(0)

《机器学习实战》预测数值型数据-回归(Regression)

回归的一般方法: (1)收集数据:采用任意方法收集数据 (2)准备数据:回归需要数值型数据,标称型数据将被转化成二值型数据 (3)分析数据:绘出数据的可视化二维图将有助于对数据做出理解和分析,在采用缩减法求得新回归系数之后,可以将新拟合线在图上作为对比 (4)训练算法:求得回归系数 (5)测试算法:使用R2或者预测值和数据的拟合度,来分析模型的效果 (6)使用算法:使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续性数据而不仅仅是离散的类别标签 github...
阅读(8106) 评论(5)

《机器学习实战》AdaBoost算法的分析与实现

=====================================================================   《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记也包含一些其他python实现的机器学习算法     github 源码同步:https://github.com/Thinkgamer/Machine-Learning-With-Py...
阅读(6273) 评论(2)

《机器学习实战》使用Apriori算法和FP-growth算法进行关联分析(Python版)

1:关联分析 2:Apriori算法和FP-growth算法原理 3:使用Apriori算法发现频繁项集 4:使用FP-growth高效发现频繁项集 5:实例:从新闻站点点击流中挖掘新闻报道 以下程序用到的源代码下载地址:GitHub 一:关联分析 1:相关概念 关联分析(association analysis):从大规模数据集中寻找商品的隐含关系 项集 (itemse...
阅读(13672) 评论(10)

《机器学习实战》基于信息论的三种决策树算法(ID3,C4.5,CART)

决策树是通过一系列规则对数据进行分类的过程,他提供一种在什么条件下会得到什么值的类似规则方法,决策树分为分类树和回归树,分类树对离散变量最决策树,回归树对连续变量做决策树如果不考虑效率等,那么样本所有特征的判断级联起来终会将某一个样本分到一个类终止块上。实际上,样本所有特征中有一些特征在分类时起到决定性作用,决策树的构造过程就是找到这些具有决定性作用的特征,根据其决定性程度来构造一个倒立的树–决定性作用最大的那个特征作为根节点,然后递归找到各分支下子数据集中次大的决定性特征,直至子数据集中所有数据都属于同一...
阅读(7694) 评论(2)

《机器学习实战》Logisic回归算法(2)之从疝气病症预测病马的死亡率

============================================================================================ 《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记,包含对其中算法的理解和算法的Python代码实现 另外博主这里有机器学习实战这本书的所有算法源代码和算法所用到的源文件,有需要的留言 =...
阅读(3416) 评论(0)

[置顶] 《机器学习实战》Logistic回归算法(1)

============================================================================================ 《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记,包含对其中算法的理解和算法的Python代码实现 另外博主这里有机器学习实战这本书的所有算法源代码和算法所用到的源文件,有需要的留言 =...
阅读(14460) 评论(3)

《推荐系统学习》之推荐系统那点事

转载自:http://www.admin10000.com/document/4995.html 推荐系统的误区   回想起来,我也算是国内接触推荐系统较早的人之一了,最近和人聊天,觉得不少人对推荐系统有所误解,以为需要多么高大上的算法才能搭建起来的,我只想说我经常说的那句话【不是这样的】,所以有了这篇文章。   第一次接触【推荐系统】是在两年前在某高校的互联网信息处...
阅读(2733) 评论(1)
27条 共2页1 2 下一页 尾页
    微信公众号【数据与算法联盟】

    扫码关注公众号,不定期推送实战文章!

    扫码加我微信,拉你进数据算法大佬群!
    个人资料
    • 访问:1066115次
    • 积分:11758
    • 等级:
    • 排名:第1530名
    • 原创:227篇
    • 转载:22篇
    • 译文:2篇
    • 评论:343条
    个人简介
    姓名:Thinkgamer

    Github:https://github.com/thinkgamer

    主攻:云计算/python/数据分析

    程度:熟悉/熟悉/熟悉

    微信:gyt13342445911

    Email:thinkgamer@163.com

    工作状态:在职ing

    心灵鸡汤:只要努力,你就是下一个大牛...

    hadoop/spark/机器学习群:279807394(大神建的群,蹭个管理员)

    欢迎骚扰........
    博客专栏
    最新评论