scikit-learn学习之SVM算法

分隔超平面:将数据集分割开来的直线叫做分隔超平面。 超平面:如果数据集是N维的,那么就需要N-1维的某对象来对数据进行分割。该对象叫做超平面,也就是分类的决策边界。 间隔: 一个点到分割面的距离,称为点相对于分割面的距离。 数据集中所有的点到分割面的最小间隔的2倍,称为分类器或数据集的间隔。 最大间隔:SVM分类器是要找最大的数据集间隔。 支持向量:坐落在数据边际的两边超平面上的点被称为支持向量...
阅读(13572) 评论(6)

scikit-learn学习之神经网络算法

1:神经网络算法简介 2:Backpropagation算法详细介绍 3:非线性转化方程举例 4:自己实现神经网络算法NeuralNetwork 5:基于NeuralNetwork的XOR实例 6:基于NeuralNetwork的手写数字识别实例 7:scikit-learn中BernoulliRBM使用实例 8:scikit-learn中的手写数字识别实例...
阅读(14088) 评论(5)

scikit-learn学习之贝叶斯分类算法

====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正  转载请注明出处,谢谢   ==================================================...
阅读(7820) 评论(0)

scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法

====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正    转载请注明出处 ===========================================================...
阅读(16612) 评论(1)

scikit-learn学习之回归分析

本篇博客主要介绍了简单线性回归,多元线性回归和非线性回归,主要是结合Python和Scikit-learn机器学习库进行相应的分析 目录: 1、概念 2、简单线性回归(Simple Liner Regession) 3、多元性回归(Mutiple Regession) 4、非线性回归(Logistic Regession)...
阅读(9812) 评论(0)

scikit-learn学习之K最近邻算法(KNN)

kNN算法全称是k-最近邻算法(K-Nearest Neighbor) kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。...
阅读(7710) 评论(12)

scikit-learn学习之决策树算法

决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测 基本思想 1)树以代表训练样本的单个结点开始。 2)如果样本都在同一个类.则该结点成为树叶,并用该类标记。...
阅读(7159) 评论(10)

[置顶] Scikit Learn: 在python中机器学习

Warning 警告:有些没能理解的句子,我以自己的理解意译。 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 ...
阅读(2683) 评论(0)
    Thinkgamer微博
    个人微信,一起交流!

     扫一扫,关注我




    个人资料
    • 访问:636160次
    • 积分:8376
    • 等级:
    • 排名:第2255名
    • 原创:208篇
    • 转载:24篇
    • 译文:2篇
    • 评论:221条
    个人简介
    姓名:Thinkgamer

    Github:https://github.com/thinkgamer

    主攻:云计算/python/数据分析

    程度:熟悉/熟悉/熟悉

    微信:gyt13342445911

    Email:thinkgamer@163.com

    工作状态:在职ing

    心灵鸡汤:只要努力,你就是下一个大牛...

    hadoop/spark/机器学习群:279807394(大神建的群,蹭个管理员)

    欢迎骚扰........
    博客专栏
    最新评论