K-means 聚类算法的理解与案例实战

工作之后,发现对算法和技术的理解和上学时学习是不一样的,当时也整理了几篇关于k-means聚类的文章,但是现在看起来比较苍白和空洞,于是打算带着重新学习的态度对以往学习过或者见过的一些机器学习算法进行温习和总结,写的不足之处还望路过大神指点一二。...
阅读(2229) 评论(16)

MachingLearning中的距离和相似性计算以及python实现

在机器学习中,经常要用到距离和相似性的计算公式,我么要常计算个体之间的差异大小,继而评价个人之间的差异性和相似性,最常见的就是数据分析中的相关分析,数据挖掘中的分类和聚类算法。如利用k-means进行聚类时,判断个体所属的类别,要利用距离计算公式计算个体到簇心的距离,如利用KNN进行分类时,计算个体与已知类别之间的相似性,从而判断个体所属的类别等。...
阅读(1981) 评论(3)

Scrapy 爬取百度贴吧指定帖子的发帖人和回帖人

该篇文章将是Scrapy爬虫系列的开篇,随后会不定时更新该框架方面的内容和知识,在scrapy之前写爬虫主要用的BeautifulSoup, request 和urllib,但随着使用程度的加深,慢慢意识到功能和效率都是不够的,那么便重新接触了Scrapy框架,并尝试着写出一些有趣的东西。...
阅读(1695) 评论(0)

推荐算法的回顾总结

之前看过一段时间协同过滤的推荐算法,当时理解并不深刻,对于其浅显的理解是从海量数据中挖掘出小部分与你品味相同的用户,协同过滤分为基于用户的和基于物品的。...
阅读(2960) 评论(4)
    Thinkgamer微博
    个人微信,一起交流!

     扫一扫,关注我




    个人资料
    • 访问:751722次
    • 积分:9426
    • 等级:
    • 排名:第1985名
    • 原创:212篇
    • 转载:22篇
    • 译文:2篇
    • 评论:273条
    个人简介
    姓名:Thinkgamer

    Github:https://github.com/thinkgamer

    主攻:云计算/python/数据分析

    程度:熟悉/熟悉/熟悉

    微信:gyt13342445911

    Email:thinkgamer@163.com

    工作状态:在职ing

    心灵鸡汤:只要努力,你就是下一个大牛...

    hadoop/spark/机器学习群:279807394(大神建的群,蹭个管理员)

    欢迎骚扰........
    博客专栏
    最新评论