SDNUOJ1011(斯特灵数)

原创 2016年05月31日 19:57:58

Stirling数的第er类应用
有关斯特灵数的知识可以看看维基百科
Stirling数两大应用
1.
第一类Stirling数是有正负的,其绝对值是n个元素的项目分作k个环排列的方法数目。常用的表示方法有s(n,k) ,换个较生活化的说法,就是有n个人分成k组,每组内再按特定顺序围圈的分组方法的数目。
2.
第二类Stirling数是n个元素的集定义k个等价类的方法数目。常用的表示方法有S(n,k) , 换个较生活化的说法,就是有n个人分成k组的分组方法的数目。
递推公式:
第一类Stirling数是有正负的,其绝对值是包含n个元素的集合分作k个环排列的方法数目。   
递推公式为,   
1.S(n,0) = 0, S(1,1) = 1.;(结束条件) 
2.S(n+1,k) = S(n,k-1) + nS(n,k)。
第二类Stirling数是把包含n个元素的集合划分为正好k个非空子集的方法的数目。   
递推公式为:  
1.S(n,k)=0
S(n,n) = S(n,1) = 1;(结束条件)
2.S(n,k) = S(n-1,k-1) + kS(n-1,k).
注意不dan球不同,盒子也不同,需将盒子排列;

题目代码(打表)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{
    int n,k;
    long long kj[15];//k的阶乘
    long long hq[15][15];//hq[i][j]i个球,k个盒子
    memset(hq,0,sizeof(hq));
    memset(kj,0,sizeof(kj));
    kj[1]=1;
    for(int i=2;i<=10;i++)
        kj[i]=i*kj[i-1];
    for(int i=1;i<=10;i++)
    {
        hq[i][i]=1;
        hq[i][1]=1;
    }
    for(int i=1;i<=10;i++)
        for(int j=2;j<=10;j++)
            if(i>j)
            hq[i][j]=hq[i-1][j-1]+j*hq[i-1][j];
    while(scanf("%d %d",&n,&k)!=EOF)
    {
        printf("%lld\n",kj[k]*hq[n][k]);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

[组合数学] 第一类,第二类Stirling数,Bell数

一.第二类Stirling数         定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数。         证明:元素在拿些盒子...
  • sr19930829
  • sr19930829
  • 2014年11月07日 10:32
  • 4547

斯特灵数 stiriling

第一类stiriling数: 先给出定义 s(n,k): 个元素的项目分作{\displaystyle k}个环排列的方法数目 (此时我们就可以忽略排列的开始元素 举个例子:s(4,2) = 11 ...
  • meixiuxiudd
  • meixiuxiudd
  • 2016年08月15日 23:46
  • 279

斯特灵(Stirling)数

第一类:n个元素分成k个非空循环排列(环)的方法总数 递推式:s(n+1,k)=s(n,k-1)+n*s(n,k) 解释:考虑第n+1个元素  1、单独形成循环排列,剩下的有s(n,k-1)种方法  ...
  • booyoungxu
  • booyoungxu
  • 2015年08月27日 14:32
  • 171

斯特灵数 (Stirling数)

@维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的。 第一类 s(4,2)=11 第一类Stirling数是有正负的,...
  • yew1eb
  • yew1eb
  • 2013年08月17日 15:17
  • 1731

斯特灵数 hdu 3625

这是个斯特灵数的问题,跟卡塔兰数一样,根本没听过……但是感觉挺实用的…… 斯特灵数一共分两类,这个是第一类……维基百科:点击打开链接 ###############################...
  • aszmq
  • aszmq
  • 2013年05月19日 21:54
  • 554

卡特兰数|斯特灵数

/* 卡特兰数 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35...
  • Luoluo_ai
  • Luoluo_ai
  • 2013年05月06日 18:14
  • 482

差分序列和斯特灵数

K. paulzhou和方程 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/102400K (Java/Other) To...
  • nucshiyilang
  • nucshiyilang
  • 2017年06月05日 09:40
  • 162

hdu 3625 第一类斯特灵数

Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth...
  • u012358934
  • u012358934
  • 2014年04月04日 09:09
  • 577

hdu 2521 一卡通大冒险 (斯特灵数,贝尔数)

/* 将N张卡分成若干个集合,集合不为空,有多少种分法。 f[n][m]表示n张卡分成m组的种类数,那么f[n][m]=f[n-1][m-1]+f[n-1][m]*m,//第二类斯特灵数 而ans[n...
  • lp_opai
  • lp_opai
  • 2014年09月27日 21:41
  • 798

[第二类斯特林数 组合 分治FFT||多项式求逆] BZOJ 4555 [Tjoi2016&Heoi2016]求和

自己好弱 多项式求逆不会啊 分治FFT也是第一次打 #include #include #include using namespace std; typedef long long ll...
  • u014609452
  • u014609452
  • 2016年08月22日 21:28
  • 611
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:SDNUOJ1011(斯特灵数)
举报原因:
原因补充:

(最多只允许输入30个字)