关闭

Machine Learning课程 by Andrew Ng

标签: machine learning机器学习Andrew NgCoursera
2244人阅读 评论(0) 收藏 举报
分类:

大名鼎鼎的机器学习大牛Andrew Ng的Machine Learning课程,在此mark一下:



一:Coursera:

https://www.coursera.org/learn/machine-learning/home/info


这门课是Andrew Ng在其开创的公开在线课程网站coursera上最初开设的几门课之一,assignment也有一定的难度。大纲如下:

Syllabus

第 1周
Introduction
  • Environment Setup Instructions
  • Introduction
  • Review
  • Course Wiki Lecture Notes
  • Quiz: Introduction
  • 第 2周
    Linear Regression with One Variable
  • Model and Cost Function
  • Parameter Learning
  • Review
  • Quiz: Linear Regression with One Variable
  • 第 3周
    Linear Algebra Review
  • Linear Algebra Review
  • Review
  • 第 4周
    Linear Regression with Multiple Variables
  • Multivariate Linear Regression
  • Computing Parameters Analytically
  • Review
  • Quiz: Linear Regression with Multiple Variables
  • Programming Assignment: Linear Regression
  • 第 5周
    Octave Tutorial
  • Octave Tutorial
  • Submitting Programming Assignments
  • Review
  • Quiz: Octave Tutorial
  • 第 6周
    Logistic Regression
  • Classification and Representation
  • Logistic Regression Model
  • Multiclass Classification
  • Review
  • Quiz: Logistic Regression
  • Programming Assignment: Logistic Regression
  • 第 7周
    Regularization
  • Solving the Problem of Overfitting
  • Review
  • Quiz: Regularization
  • 第 8周
    Neural Networks: Representation
  • Motivations
  • Neural Networks
  • Applications
  • Review
  • Quiz: Neural Networks: Representation
  • Programming Assignment: Multi-class Classification and Neural Networks
  • 第 9周
    Neural Networks: Learning
  • Cost Function and Backpropagation
  • Backpropagation in Practice
  • Application of Neural Networks
  • Review
  • Quiz: Neural Networks: Learning
  • Programming Assignment: Neural Network Learning
  • 第 10周
    Advice for Applying Machine Learning
  • Evaluating a Learning Algorithm
  • Bias vs. Variance
  • Review
  • Quiz: Advice for Applying Machine Learning
  • Programming Assignment: Regularized Linear Regression and Bias/Variance
  • 第 11周
    Machine Learning System Design
  • Building a Spam Classifier
  • Handling Skewed Data
  • Using Large Data Sets
  • Review
  • Quiz: Machine Learning System Design
  • 第 12周
    Support Vector Machines
  • Large Margin Classification
  • Kernels
  • SVMs in Practice
  • Review
  • Quiz: Support Vector Machines
  • Programming Assignment: Support Vector Machines
  • 第 13周
    Unsupervised Learning
  • Clustering
  • Review
  • Quiz: Unsupervised Learning
  • 第 14周
    Dimensionality Reduction
  • Motivation
  • Principal Component Analysis
  • Applying PCA
  • Review
  • Quiz: Principal Component Analysis
  • Programming Assignment: K-Means Clustering and PCA
  • 第 15周
    Anomaly Detection
  • Density Estimation
  • Building an Anomaly Detection System
  • Multivariate Gaussian Distribution (Optional)
  • Review
  • Quiz: Anomaly Detection
  • 第 16周
    Recommender Systems
  • Predicting Movie Ratings
  • Collaborative Filtering
  • Low Rank Matrix Factorization
  • Review
  • Quiz: Recommender Systems
  • Programming Assignment: Anomaly Detection and Recommender Systems
  • 第 17周
    Large Scale Machine Learning
  • Gradient Descent with Large Datasets
  • Advanced Topics
  • Review
  • Quiz: Large Scale Machine Learning
  • 第 18周
    Application Example: Photo OCR
  • Photo OCR
  • Review
  • Conclusion
  • Quiz: Application: Photo OCR
  • 二:网易公开课(带中文翻译字幕、英文课件可打包下载):

    http://v.163.com/special/opencourse/machinelearning.html




    三:MOOC学院(类似于coursera):
    http://mooc.guokr.com/course/16/Machine-Learning/




    四:Stanford(斯坦福Machine Learning课程cs229.官网):
    http://cs229.stanford.edu/


    0
    0
    查看评论
    发表评论
    * 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

    《机器学习》(Machine Learning)——Andrew Ng 斯坦福大学公开课学习笔记(一)

    看到蘑菇街招聘的一个加分项是学过Andrew Ng的机器学习课程,于是找来看了下目录,大多数内容之前在PRML中有接触过,研究生课程智能信息处理中也有接触,但觉得不够系统,于是按斯坦福的公开课课表过一...
    • u013896242
    • u013896242
    • 2015-08-05 16:24
    • 2030

    Machine Learning机器学习公开课汇总

    机器学习目前比较热,网上也散落着很多相关的公开课和学习资源,这里基于课程图谱的机器学习公开课标签做一个汇总整理,便于大家参考对比。 1、Coursera上斯坦福大学Andrew Ng教授的“机器学习...
    • GarfieldEr007
    • GarfieldEr007
    • 2016-03-29 12:24
    • 1729

    Andrew Ng coursera上的《机器学习》ex1

    本系列文章是在coursera上学习Andrew Ng的《机器学习》之后,对练习题进行了一些总结。我是初学者,所以肯定存在很多错误,欢迎大家能够给我提意见。Andrew Ng coursera上的《...
    • LilyNothing
    • LilyNothing
    • 2016-08-19 11:36
    • 1389

    Machine Learning by Andrew Ng本期程序

    • 2014-03-24 12:38
    • 468KB
    • 下载

    Machine Learning(by Andrew Ng) 学习笔记

    监督学习:通过已有的训练样本(即已知数据以及其对应的输出)来训练,从而得到一个最优模型,再利用这个模型将所有新的数据样本映射为相应的输出结果。 监督学习问题分为“回归”和“分类”问题。 在回归问题...
    • wangchao7281
    • wangchao7281
    • 2017-05-04 11:12
    • 321

    stanford公开课Machine Learning视频教程By Andrew Ng

    Machine Learning Andrew Ng Course Description In this course, you'll learn about some of the ...
    • GarfieldEr007
    • GarfieldEr007
    • 2015-12-05 18:28
    • 2333

    Outline of Machine Learning created by Andrew Ng on Coursera

    By the time you finish this class * You’ll know how to apply the most advanced machine learning alg...
    • landstream
    • landstream
    • 2017-07-14 16:12
    • 117

    机器学习 Machine Learning(by Andrew Ng)----第五章 正则化(Regularization)

    第五章 正则化(Regularization)  过拟合的问题(The Problem of Overfitting)> 代价函数(Cost Function)>  正则化线性回归(Regul...
    • A2275037460
    • A2275037460
    • 2016-07-23 08:22
    • 763

    Machine Learning Logistic Regression and Newton's Method Andrew Ng 课程练习 Matlab Script 详细解析

    %% %For this exercise, suppose that a high school has a dataset representing 40 students ... %who we...
    • u012751110
    • u012751110
    • 2016-04-10 22:44
    • 497

    Machine Learning —— By Andrew Ng(机器学习 听后自己做的笔记 记录重点内容)

    MachineLearning ——byAndrew Ng , Stanford   第一讲:机器学习的动机与应用 一、监督学习: 1、  回归问题: 房价预测 2、  分类问题:...
    • u010692239
    • u010692239
    • 2013-11-01 20:45
    • 1689
      个人资料
      • 访问:5344559次
      • 积分:61961
      • 等级:
      • 排名:第48名
      • 原创:427篇
      • 转载:3852篇
      • 译文:0篇
      • 评论:338条
      最新评论