Machine Learning课程 by Andrew Ng

原创 2015年07月07日 17:24:51

大名鼎鼎的机器学习大牛Andrew Ng的Machine Learning课程,在此mark一下:



一:Coursera:

https://www.coursera.org/learn/machine-learning/home/info


这门课是Andrew Ng在其开创的公开在线课程网站coursera上最初开设的几门课之一,assignment也有一定的难度。大纲如下:

Syllabus

第 1周
Introduction
  • Environment Setup Instructions
  • Introduction
  • Review
  • Course Wiki Lecture Notes
  • Quiz: Introduction
  • 第 2周
    Linear Regression with One Variable
  • Model and Cost Function
  • Parameter Learning
  • Review
  • Quiz: Linear Regression with One Variable
  • 第 3周
    Linear Algebra Review
  • Linear Algebra Review
  • Review
  • 第 4周
    Linear Regression with Multiple Variables
  • Multivariate Linear Regression
  • Computing Parameters Analytically
  • Review
  • Quiz: Linear Regression with Multiple Variables
  • Programming Assignment: Linear Regression
  • 第 5周
    Octave Tutorial
  • Octave Tutorial
  • Submitting Programming Assignments
  • Review
  • Quiz: Octave Tutorial
  • 第 6周
    Logistic Regression
  • Classification and Representation
  • Logistic Regression Model
  • Multiclass Classification
  • Review
  • Quiz: Logistic Regression
  • Programming Assignment: Logistic Regression
  • 第 7周
    Regularization
  • Solving the Problem of Overfitting
  • Review
  • Quiz: Regularization
  • 第 8周
    Neural Networks: Representation
  • Motivations
  • Neural Networks
  • Applications
  • Review
  • Quiz: Neural Networks: Representation
  • Programming Assignment: Multi-class Classification and Neural Networks
  • 第 9周
    Neural Networks: Learning
  • Cost Function and Backpropagation
  • Backpropagation in Practice
  • Application of Neural Networks
  • Review
  • Quiz: Neural Networks: Learning
  • Programming Assignment: Neural Network Learning
  • 第 10周
    Advice for Applying Machine Learning
  • Evaluating a Learning Algorithm
  • Bias vs. Variance
  • Review
  • Quiz: Advice for Applying Machine Learning
  • Programming Assignment: Regularized Linear Regression and Bias/Variance
  • 第 11周
    Machine Learning System Design
  • Building a Spam Classifier
  • Handling Skewed Data
  • Using Large Data Sets
  • Review
  • Quiz: Machine Learning System Design
  • 第 12周
    Support Vector Machines
  • Large Margin Classification
  • Kernels
  • SVMs in Practice
  • Review
  • Quiz: Support Vector Machines
  • Programming Assignment: Support Vector Machines
  • 第 13周
    Unsupervised Learning
  • Clustering
  • Review
  • Quiz: Unsupervised Learning
  • 第 14周
    Dimensionality Reduction
  • Motivation
  • Principal Component Analysis
  • Applying PCA
  • Review
  • Quiz: Principal Component Analysis
  • Programming Assignment: K-Means Clustering and PCA
  • 第 15周
    Anomaly Detection
  • Density Estimation
  • Building an Anomaly Detection System
  • Multivariate Gaussian Distribution (Optional)
  • Review
  • Quiz: Anomaly Detection
  • 第 16周
    Recommender Systems
  • Predicting Movie Ratings
  • Collaborative Filtering
  • Low Rank Matrix Factorization
  • Review
  • Quiz: Recommender Systems
  • Programming Assignment: Anomaly Detection and Recommender Systems
  • 第 17周
    Large Scale Machine Learning
  • Gradient Descent with Large Datasets
  • Advanced Topics
  • Review
  • Quiz: Large Scale Machine Learning
  • 第 18周
    Application Example: Photo OCR
  • Photo OCR
  • Review
  • Conclusion
  • Quiz: Application: Photo OCR
  • 二:网易公开课(带中文翻译字幕、英文课件可打包下载):

    http://v.163.com/special/opencourse/machinelearning.html




    三:MOOC学院(类似于coursera):
    http://mooc.guokr.com/course/16/Machine-Learning/




    四:Stanford(斯坦福Machine Learning课程cs229.官网):
    http://cs229.stanford.edu/


    版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

    相关文章推荐

    Coursera Machine Learning 第四周 quiz Neural Networks: Representation

    Which of the following statements are true? Check all that apply. 答案CD Suppose you have...

    Coursera Machine Learning 第八周 quiz Programming Exercise 7 K-means Clustering and Principal Component

    findClosestCentroids.m function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu...

    精选:深入理解 Docker 内部原理及网络配置

    网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

    Coursera Machine Learning 第十一周 quiz Application: Photo OCR

    1 point 1.  Suppose you are running a sliding window detector to find text in images. Your inp...

    Coursera Machine Learning 第八周 quiz Unsupervised Learning

    1 point 1.  For which of the following tasks might K-means clustering be a suitable algorithm? ...

    Coursera Machine Learning 第八周 quiz Principal Component Analysis

    1 point 1.  Consider the following 2D dataset: Which of the following figures correspond to...

    Machine Learning课程 by Andrew Ng

    大名鼎鼎的机器学习大牛Andrew Ng的Machine Learning课程,在此mark一下: 一:Coursera: https://www.coursera.org/l...

    Andrew Ng-Machine learning (1)

    近日在导师的指导下观看了Andrew NG的在coursera上面的Machine learning。稍做总结吧! 什么是机器学习 在百度百科上这样描述:机器学习(Machine ...

    #“Machine Learning”(Andrew Ng)#Week 3_4:Solving the Problem of Overfitting

    1、The Problem of Overfitting 什么是过拟合?我们通过一组图来说明: 欠拟合:这个问题的另一个术语叫做高偏差(bias),这两种说法大致相似,意思是它只是没有很好地拟合训练数...

    #“Machine Learning”(Andrew Ng)#Week 3_3:Multiclass Classification One-vs-all

    1、Multiclass Classification One-vs-all 如何使用逻辑回归 (logistic regression) 来解决多类别分类问题,具体来说,我想通过一个叫做"一对多" ...

    #“Machine Learning”(Andrew Ng)#Week 4_3:Examples and Intuition I

    1、Examples and Intuition 1 在这个例子中,我只画出了两个正样本和两个负样本,你可以认为这是一个更复杂的学习问题的简化版本。在这个复杂问题中,我们可能在右上角有一堆正样本,在左...
    返回顶部
    收藏助手
    不良信息举报
    您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
    举报原因:
    原因补充:

    (最多只允许输入30个字)