Hadoop之WordCount源代码

原创 2015年11月18日 11:36:39


一、旧版WordCount源代码

//package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;

public class WordCount {
	public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();
		public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter)throws IOException {
			String line = value.toString();
			StringTokenizer tokenizer = new StringTokenizer(line);
			while (tokenizer.hasMoreTokens()) {
				word.set(tokenizer.nextToken());
				output.collect(word, one);
			} //while
		} //map()
	} //static class Map

	public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
		public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter)throws IOException {
			int sum = 0;
			while (values.hasNext()) {
				sum += values.next().get();
			}
			output.collect(key, new IntWritable(sum));
		} //reduce()
	} //static class Reduce
	public static void main(String[] args) throws Exception {
		JobConf conf = new JobConf(WordCount.class);
		conf.setJobName("wordcount");
		conf.setOutputKeyClass(Text.class);
		conf.setOutputValueClass(IntWritable.class);
		conf.setMapperClass(Map.class);
		conf.setCombinerClass(Reduce.class);
		conf.setReducerClass(Reduce.class);
		conf.setInputFormat(TextInputFormat.class);
		conf.setOutputFormat(TextOutputFormat.class);
		FileInputFormat.setInputPaths(conf, new Path(args[0]));
		FileOutputFormat.setOutputPath(conf, new Path(args[1]));
		JobClient.runJob(conf);
	} //main()
} //class WordCount



二、新版WordCount源代码

//package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
	public static class TokenizerMapper
			extends Mapper<Object, Text, Text, IntWritable>{
			private final static IntWritable one = new IntWritable(1);
			private Text word = new Text();
			public void map(Object key, Text value, Context context)throws IOException, InterruptedException {
				StringTokenizer itr = new StringTokenizer(value.toString());
				while (itr.hasMoreTokens()) {
					word.set(itr.nextToken());
					context.write(word, one);
				} //while
			} //map()
	} //static class TokenizerMapper
	public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
		private IntWritable result = new IntWritable();
		public void reduce(Text key, Iterable<IntWritable> values,Context context)throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable val : values) {
				sum += val.get();
			}
			result.set(sum);
			context.write(key, result);
		} //reduce
	} //static class IntSumReducer
	public static void main(String[] args) throws Exception {
	Configuration conf = new Configuration();
	String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
	if (otherArgs.length != 2) {
		System.err.println("Usage: wordcount <in> <out>");
		System.exit(2);
	}
	Job job = new Job(conf, "word count");
	job.setJarByClass(WordCount.class);
	job.setMapperClass(TokenizerMapper.class);
	job.setCombinerClass(IntSumReducer.class);
	job.setReducerClass(IntSumReducer.class);
	job.setOutputKeyClass(Text.class);
	job.setOutputValueClass(IntWritable.class);
	FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
	FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
	System.exit(job.waitForCompletion(true) ? 0 : 1);
} //main()
} //class WordCount





版权声明:本文为博主原创文章,未经博主允许不得转载。

MapReduce之 WordCount 源码分析和操作流程

在之前的工作中,主要做了三件事情:1 如何完成Hadoop的完全分布式集群搭建 2 如何运行Hadoop自带示例WordCount,验证集群的运行 3 如何基于eclipse插件实现Hadoop编...
  • u010414589
  • u010414589
  • 2016年05月06日 21:44
  • 1689

Hadoop入门经典:WordCount

以下程序在hadoop1.2.1上测试成功。 本例先将源代码呈现,然后详细说明执行步骤,最后对源代码及执行过程进行分析。 一、源代码 package org.jediael.hadoopdemo.wo...
  • jediael_lu
  • jediael_lu
  • 2014年08月20日 14:43
  • 43215

hadoop-python——Wordcount程序:python实现详解

mapper.py函数如下: import sys # 调用标准输入流 for line in sys.stdin: # 读取文本内容 line = line....
  • pat_datamine
  • pat_datamine
  • 2015年01月07日 14:20
  • 1260

Hadoop之图解MapReduce与WordCount示例分析

Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。   HDFS是Google File System(G...
  • shujuelin
  • shujuelin
  • 2018年01月21日 12:42
  • 48

初学Hadoop之WordCount词频统计

阅读目录 1、WordCount源码2、编译源码3、运行4、查看结果 1、WordCount源码 将源码文件WordCount.java放到Hadoop2.8.0文件夹中。 i...
  • lifeifei2010
  • lifeifei2010
  • 2017年04月06日 16:33
  • 1374

hadoop 自带示例wordcount 详细运行步骤

因为机器学习,接触到了数据挖掘;因为数据挖掘,接触到了大数据;因为大数据,接触到了Hadoop。之前有过hadoop的简单了解,但都是基于别人提供的hadoop来学习和使用,虽然也很好用 ,终究不如自...
  • u010414589
  • u010414589
  • 2016年04月26日 21:20
  • 5113

Hadoop WordCount源码解读

MapReduce编程模型MapReduce采用“分而治之”的思想。将HDFS上海量数据切分成为若干块,将每块的数据分给集群上的节点进行计算。然后通过整合各节点的中间结果,得到最终的结果。 HDF...
  • c275046758
  • c275046758
  • 2015年07月26日 17:43
  • 795

运行hadoop自带wordcount例子

运行hadoop自带wordcount例子 GSS initiate failed
  • T555222
  • T555222
  • 2017年09月07日 16:00
  • 357

hadoop自带wordcount代码详解

hadoop中自带wordcount代码详解wordcount代码详解package cn.chinahadoop;import java.io.IOException; import java.ut...
  • superman_xxx
  • superman_xxx
  • 2016年06月01日 05:25
  • 3481

hadoop自带示例wordcount

1.首先确认你的hadoop启动了。 master与slave启动方式相同,进入hadoop目录下的sbin目录,命令:$cd /home/hadoop/hadoop/sbin (根据个人安装的had...
  • xiakexiaohu
  • xiakexiaohu
  • 2017年01月17日 22:18
  • 678
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hadoop之WordCount源代码
举报原因:
原因补充:

(最多只允许输入30个字)