关闭

Machine Learning week 4 quiz: Neural Networks: Representation

标签: Machine LearningquizNeural NetworksRepresentationcoursera
15179人阅读 评论(1) 收藏 举报
分类:

Neural Networks: Representation

5 试题

1. 

Which of the following statements are true? Check all that apply.

A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.

The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).

Suppose you have a multi-class classification problem with three classes, trained with a 3 layer network. Let a(3)1=(hΘ(x))1 be the activation of the first output unit, and similarly a(3)2=(hΘ(x))2 and a(3)3=(hΘ(x))3. Then for any input x, it must be the case that a(3)1+a(3)2+a(3)3=1.

Any logical function over binary-valued (0 or 1) inputs x1 and x2 can be (approximately) represented using some neural network.

2. 

Consider the following neural network which takes two binary-valued inputs x1,x2{0,1} and outputs hΘ(x). Which of the following logical functions does it (approximately) compute?

OR

AND

NAND (meaning "NOT AND")

XOR (exclusive OR)

3. 

Consider the neural network given below. Which of the following equations correctly computes the activation a(3)1? Note: g(z) is the sigmoid activation function.

a(3)1=g(Θ(2)1,0a(2)0+Θ(2)1,1a(2)1+Θ(2)1,2a(2)2)

a(3)1=g(Θ(2)1,0a(1)0+Θ(2)1,1a(1)1+Θ(2)1,2a(1)2)

a(3)1=g(Θ(1)1,0a(2)0+Θ(1)1,1a(2)1+Θ(1)1,2a(2)2)

a(3)1=g(Θ(2)2,0a(2)0+Θ(2)2,1a(2)1+Θ(2)2,2a(2)2)

4. 

You have the following neural network:

You'd like to compute the activations of the hidden layer a(2)R3. One way to do so is the following Octave code:

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute a(2)? Check all that apply.

z = Theta1 * x; a2 = sigmoid (z);

a2 = sigmoid (x * Theta1);

a2 = sigmoid (Theta2 * x);

z = sigmoid(x); a2 = sigmoid (Theta1 * z);

5. 

You are using the neural network pictured below and have learned the parameters Θ(1)=[111.55.13.72.3] (used to compute a(2)) and Θ(2)=[10.60.8] (used to compute a(3)} as a function of a(2)). Suppose you swap the parameters for the first hidden layer between its two units so Θ(1)=[115.11.52.33.7] and also swap the output layer so Θ(2)=[10.80.6]. How will this change the value of the output hΘ(x)?

It will stay the same.

It will increase.

It will decrease

Insufficient information to tell: it may increase or decrease.

0
8
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

coursera-斯坦福-机器学习-吴恩达-第4周笔记-神经网络

coursera-斯坦福-机器学习-吴恩达-第4周笔记-神经网络coursera-斯坦福-机器学习-吴恩达-第4周笔记-神经网络 提出神经网络的动机 神经网络算法 1 神经元 2 神经网络 应用 1 ...
  • u012052268
  • u012052268
  • 2017-11-30 16:11
  • 906

Machine Learning - Neural Networks Examples and Intuitions

This articles contains topics about Neural Networks examples and intuitions.
  • iracer
  • iracer
  • 2016-03-13 09:38
  • 1305

吴恩达第四周答案 Neural Networks: Representation

Which of the following statements are true? Check all that apply. Any logical f...
  • qq_40295036
  • qq_40295036
  • 2017-09-27 13:22
  • 117

Coursera Machine Learning Week 4 - Neural Networks

Coursera Machine Learning Week 4 - Neural Networks
  • xiewen99
  • xiewen99
  • 2016-08-31 13:59
  • 4403

DeepLearningToolBox学习——NN(neural network)

经典的DeepLearningToolBox,将里面的模型和Andrew Ng的UFLDL tutorial 对应学习,收获不小。 下载地址:DeepLearningToolBox 神经网络模...
  • u010025211
  • u010025211
  • 2016-01-25 17:19
  • 3636

第三周编程作业-Planar data classification with one hidden layer

Planar data classification with one hidden layer Welcome to your week 3 programming assignment. It's...
  • yanqianglifei
  • yanqianglifei
  • 2017-09-19 19:49
  • 1593

Coursera Machine Learning 第四周 quiz Neural Networks: Representation

Which of the following statements are true? Check all that apply. 答案CD Suppose you have...
  • mupengfei6688
  • mupengfei6688
  • 2016-11-11 00:00
  • 4298

数据挖掘错题集

1.    Some of the problems below are best addressed using a supervised learning algorithm, and the o...
  • ChallenChenZhiPeng
  • ChallenChenZhiPeng
  • 2012-09-02 10:08
  • 28715

Coursera Deep Learning 4 卷积神经网络 第一周习题

The basics of ConvNets 1 What do you think applying this filter to a grayscale image will do? Det...
  • sinat_32547403
  • sinat_32547403
  • 2018-01-03 11:11
  • 169

机器学习7-SVM

http://pan.baidu.com/s/1bnyCFIB
  • yinlili2010
  • yinlili2010
  • 2014-11-23 21:51
  • 10163
    个人资料
    • 访问:5292676次
    • 积分:61524
    • 等级:
    • 排名:第50名
    • 原创:427篇
    • 转载:3852篇
    • 译文:0篇
    • 评论:335条
    最新评论